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Design and Analysis of Experiments

Textbooks:

= Applied Statistics and Probability for Engineers, D.C. Montgomery and G.C. Runger.
= Design and Analysis of Experiments, Montgomery D.C. (2009), 7th Ed., ISBN: 978-0470-39882-1, John Wiley
and Sons, N.Y

Lecture: Monday & Wednesday 11:30-13:00

Instructor: Prof. Mohammad Aljarrah, Ph.D., P. Eng., CLSSBB

Midterm 25%
Project 25%
Class activities 10%

Final 40%
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Review

d Sampling

d Normality

1 Hypothesis testing
O P-Value

d Process Stability

d Measurement system analysis



Sampling

1 How to collect sample data?
d What is the sample size?

1 What are types of samples?



Frequency

Histogram of C1

Normality

3004

2004

100

1.1

8.8

Summary Report for C1

1.1

b FRRIOIE I O
95% Confidence Intervals
Mean - ® I
Median{ | ®
4.I95 4.66 4.I9? 4.é8 4.é9 5.(I]0 5.61

Anderson-Darling Normality Test

A-Squared
P-Value

Mean
StDev
Variance
Skewness
Kurtosis
N

Minimum
1st Quartile
Median

3rd Quartile
Maximum

95% Confidence Interval for Mean

4.9641

95% Confidence Interval for Median

4.9495

95% Confidence Interval for StDev

0.9969

0.46
0.264

4.9839
1.0107
1.0216

0.0065659
0.0130596

10000

11031
4.3201
4.9706
5.6696
9.2022

5.0037

4.9949

1.0250



Hypothesis testing

Descriptive Statistics Test

N Mean SE Mean 95% Cl for p
100 10.500 0.200 (10.108, 10.892)

Null hypothesis Ho: =10
Alternative hypothesis Hi: p # 10

L population mean of Sample 7-Value P-Value
Known standard deviation = 2 550 0.012




Stability-Control Chart

Sample Mean

Sample Range

27

26

25

24+

23

16

124

Xbar-R Chart of Lead time

Day 1 Day 2 Day 3 Day4 | Day5 Day 6 Day 7 Day 8 Day9 | Day 10
28.0 28.7 27.9 25.5 22.2 29.1 25.8 21.9 26.3 26.0
26.8 24.2 27.6 16.7 22.9 24.4 19.5 20.4 28.1 24.2
24.7 27.2 22.2 24.4 27.9 32.2 25.8 26.1 26.4 23.8
22.4 24.3 27.7 21.1 26.3 21.3 23.1 23.7 26.9 29.7
23.1 25.9 24.9 27.2 27.7 25.3 21.0 29.1 28.0 23.9
22.3 27.4 31.6 26.2 25.1 24.0 21.4 23.9 26.3 22.3
24.1 24.2 21.9 27.1 23.0 23.2 23.9 25.3 28.8 25.0
22.5 28.4 22.2 25.0 27.6 25.1 18.6 23.3 24.9 25.3
23.9 25.4 24.5 27.2 28.6 24.9 29.1 21.1 21.1 25.9
27.5 24.5 23.3 24.3 28.8 25.2 22.1 20.9 24.0 25.9

UCL=27.510

X=24.976

LCL=22.442

10

UCL=14.61

R=8.22

LCL=1.83

T
10




Measurement system analysis

Choose a Measurement Systems Analysis

Set up study

Gage R&R
Worksheet

More.

——  Measurement

Objective

Analyze d

A J

ata

Gage R&R Study
(Crossed)

 I— —
LB
iz 724
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HRG

More..

Data type

Appraisal

Set up study

 J

Attribute Agreement
Worksheet

More..

Objective

Analyze data

 J

Attribute Agreement
Analysis

@ <[5

More..



Repeatability & Reproducibility (R&R)

Total variation

T
l l

Part-to-part variation Measurement error (Precision)

Repeatability ReprOdUCIblllty




[ Minitab - Untitled

File Edit Data Calc Stat Graph View Help Assistant Additional Tools
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4 M\ Individual Distribution Identification...

» il Johnson Transformation...

Capability Analysis

Capability Sixpack

/| Tolerance Intervals (Normal Distribution)...

1\ Tolerance Intervals (Nonnormal Distribution)...

Gage Study

Gage R¢
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Variargg

i
Source
Total €
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Create Attribute Agreement Analysis Worksheet...

Attribute Agreement Analysis...

Acceptance Sampling by Attributes...
Acceptance Sampling by Variables

Multi-Vari Chart...

Variability Chart...
Symmetry Plot...

» ? Type 1 Gage Study...

Eﬂ Create Gage R&R Study Worksheet...
lj Gage Run Chart...
-‘-‘ Gage Linearity and Bias Study...
» @3 Gage R&R Study (Crossed)...
EH Gage R&R Study (Nested)...
Dil Gage R&R Study (Expanded)...

g:I Attribute Gage Study (Analytic Method)...



Parts
Part 1
Part 1
Part 2
Part 2
Part 3
Part 3
Part 4
Part 4
Part 5
Part 5
Part 6
Part 6
Part 7
Part 7
Part 8
Part 8
Part 9
Part 9
Part 10
Part 10
Part 1
Part 1
Part 2
Part 2
Part 3
Part 3
Part 4
Part 4

Operators
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 1
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2

Measurement data
13
13
16
15
15
16
15
15
20
20
22
22
24
25
27
27
29
29
36
35
10
10
12
13
13
12
15
15

Part 5
Part5
Part 6
Part 6
Part 7
Part 7
Part 8
Part 8
Part 9
Part 9

Part 10
Part 10
Part 1
Part 1
Part 2
Part 2
Part 3
Part 3
Part 4
Part 4
Part5
Part 5

Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2
Operator 2

Operator 2
Operator 2
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3

16
18
20
20
22
21
21
22
27
26

28
30
11
11
13
13
12
15
12
12
17
18

Part 6
Part 6
Part 7
Part 7
Part 8
Part 8
Part 9
Part 9

Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3
Operator 3

Part 10 Operator 3
Part 10 Operator 3

19
20
21
22
23
24
28
28
31
27



Gage Evaluation

Study Var %Study Var

Source StdDev (SD) (6 x SD) (%SV)
Total Gage R&R 211739 12.7043 30.39
Repeatability 0.87560 5.2536 12.57
Reproducibility 1.92787 11.5672 27.67
Operators 1.70375 10.2225 24.45
Operators*Parts 0.90216 5.4129 12.95
Part-To-Part 6.63890 39.8334 95.27
Total Variation 6.96838 41.8103 100.00

1 Total Gage R&R should be less than 10%

L Between 10 and 30% is marginable, there is room for improvement
L More than 30%, measurement system is not acceptable



R Chart by Operators
Operator 1 Operator 2 Operator 3

.

! N b d UCL=2.614

R-Chart=Repeatability. We wish to
have points on zero line.

Sample Range
P

=

Xbar Chart by Operators
Operator 1 Operator 2 Operator 3

KESE 20

Xbar-Chart=Reproducibility. We wish
to have shape as similar as possible. It
IS ok to have all points outside the
control limit.
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Simple Linear Regression and Correlation
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(e) Nonlinear quadratic relationship, lyy = 0



Y.
(Oxygen

purity)

Bg + By (1.25)

B+ By (1.000

—————————————— True regression line

uylx =Ppo+ P1x
=75+ 1

x =100 x=1.25 x (Hydrocarbon level)



v" The case of simple linear regression considers a single regressor or

predictor “x” and a dependent or response Variable “Y ”.

v" Suppose that the true relationship between “Y ” and “x” is a straight line and

that the observation <Y at each level of “x” 1s a random variable

E(Y|x) = Bo + B1x

v Assume each observation is represented by a model

y(x) = Bo+ P1x t€

Where € is a random error with mean zero and variance o>



e
Observed value
Data ()

Estimated
. regression line

X

The sum of squares of the deviations of the observations from the true regression line is

L=) & =) 0o~ Brxy

n n
=1 =1



aL n .

o — _2 'l-";' - _ .‘J.Z'I- — 'D
B0 |8us, ;1(, Bo — Bix)

dL " - -

| =23 (5~ Bo — Bix)x, =0
981 |aus, ;1(, Bo — Bix)

R n
nBy + By ;-‘55 = 2}’1‘
= =

n n n
Bo 2-‘75"‘ B 2;,-’5?: EJ’;‘-"%‘
= =

Definition

model are

-~

Bo=7 — B

The least squares estimates of the intercept and slope in the simple linear regression

(2)( &

- ;yixf - 7

-~

B

[

(3)

i=1

where ¥ = (1/n) 2 _, y; and X = (1/n) 212, x;.

s
POF R

(11-7)

(11-8)




The fitted or estimated regression line is therefore

V= Bp + Bx

.

= Bﬂ + BI‘TI- + {f‘:., f

1.2,....n

where e¢; = y; — y; is called the residual.
v" The residual describes the error in the fit of the model to the ith

observation of y;

il | ]
—y 2 2
= Z_} (x; —x)" = 2N T T

i

A . y
‘.1'_1-' — El (1‘ —Xx) = E‘fol"lf - 1l

i= i=1




Observation Hydrocarbon Level Purity

The following data represents y is Number x(%) v (%)
the purity of oxygen produced in a 1 0.99 90.01
chemical distillation process, and x 2 1?2 Z?T
IS the percentagg of hydrocarbons 4 199 93.74
present in the main condenser of the 5 1.46 96.73
distillation unit. Construct the 6 1.36 94.45
. . . 7 0.87 87.59
relationship between oxygen purity q 5 0177
and percentage of hydrogen and 9 [ 55 99 42
optimize the process. 10 1.40 93.65
11 1.19 03.54

12 1.15 02.52

13 0.98 00.56

14 1.01 89.54

15 1.11 89.85

16 1.20 00.39

17 1.26 03.25

18 1.32 03.41

19 1.43 04 9%

20 (.95 87.33




20 20
n=20 >x=2392 Yy =184321 ¥= 11960 3 = 92.1605
i=1 i=1

20 20 20
D yi =170,044.5321 D xf =29.2802 D x;y; = 2,214.6566
i=1 i=1 i=1

20 2
20 (Zr) (23.92)?
See= a2 —~FL 2 =202802 — ~— = (68088
S 20 T 20 ‘
20 20

Sey = EED] (gl)(zl) = 2.,214.6566 (23:92)(1.843.21) _ 10.17744
Xy ;_ZIJ.J;}-J: 20 — L, . 20 = ;

. Sy 10.17744

B, =—= = 14.94748

S..  0.68088

Bo =7 — Bi¥ = 92.1605 — (14.94748)1.196 = 74.28331

§ = 74283 + 14.947x



Oxygen purity v (%)

102

99

96

90

87

|
1.27
Hydrocarbon level (%)
X

1.47



Estimator of ¢2

v" There is another unknown parameter in the regression model (¢2) “the
variance of the error term e.
v The residual e; = y; — p; are used to obtain an estimate of ¢2

v The sum squares of the residuals is called error sum of squares

n n
SSe= D ei = X, (vi = i)
i=1 i=1
Therefore an unbiased estimator of o? is

SSg ,\ Is the total sum
SSg = S8t — B1Sy of squares of
the response
variable y

2
i

o =

n— 2

where SS; = S/ (5, —¥)? = S, v — ny?



Y

Example

240 181 193 | 155 172 110 113 75 |94
1.6 94 |155 20 |22 355 /43 40.5 | 33

a) Fit the simple linear regression model using least squares method
b) Find an estimator of ¢2
c) Predict wear when viscosity x = 30

d) Obtain the fitted value of y when x = 22 and calculate the corresponding
residual

2
le-:zzo.s, in = 7053.67 Zyi=1333

Z yix; = 26864.4 b) y at x =22, y=156.902

Residual=172-156.902=-15.098
a) y=234.1 - 3.509 x

b) 62=398.3
b) y at x =30, y=128.83



a) y=234.1 - 3.509 x



Properties of the least square estimators

EB,) = B, Thus, B, is an unbiased estimator of the true slope B,
2
e a
(B1) =<

; . 1, X7
B(Bo) = By and V(By) = o [H + ‘_}

Definition

estimated standard error of the intercept are

In simple linear regression the estimated standard error of the slope and the

~2 f —2

h p | X
S"-?(Bl) — \n'lIS_ and SL’(BQ) — -\II"I [TE[E + 5_

2

respectively, where ¢ is computed from Equation 11-13.




Hypothesis test in simple linear regression

Suppose we wish to test the hypothesis that the slope equals a constant, say, 3,

Hy: B1 = B

Hy: By # By
B B — Buo
0 "\—f’;& .

We would reject the null hypothesis if |t = fapa—2

A similar procedure can be used to test hypotheses about the intercept. To test

Hy: Bo = Boyo
Hi: By # Boo ~




Special Case

H']: B| :0
H|ZB| = 0

Accept the null hypothesis is equivalent to conclude that there is no linear

relationship between x and y.

(a) ib)







Yards Yards
Games Rushing by Games Rushing by
Teams Won (y) Opponent (x) Teams Won (v) Opponent (x)

Washington 10 2205 Detroit 6 1901
Minnesota 11 2096 Green Bay 5 2288
New England 11 1847 Houston 5 2072
Oakland 13 1903 Kansas City 5 2861
Pittsburgh 10 1457 Miami 6 2411
Baltimore 11 1848 New Orleans 4 2289
Los Angeles 10 1564 New York Giants 3 2203
Dallas 11 1821 New York Jets 3 2592
Atlanta 4 2577 Philadelphia 4 2053
Buffalo 2 2476 St. Louis 10 1979
Chicago 7 1984 San Diego 6 2048
Cincinnati 10 1917 San Francisco 8 1786
Cleveland 1761 Seattle 2 2876
Denver 1709 Tampa Bay 0 2560

a) Estimate the standard errors of the slope and intercept

b) Test (using a = 0.01) Hy: By = —0.01 ,

Hl: ﬁl #+ —0.01



$ = 21.7883 — 0.0070251
Se(py) = " 07257 = 0.001259
ePU= 15-= 350861143

se8) = |52t + By = [s7287( L 42110082 _ o)
e = G(n Sxx - ' (28 3608611.43

T

Bi_PBio —0.0070251 + 0.01

to = — = — 23618
° " Se(B) 0.001259

t_%,n_g = t_0.00526 = 2.779

to <t_a Accept H,
>

n—2



Analysis of VVariance Approach to Test Significance of Regression

v" A method called the analysis of variance can be used to test the significance
of regression

v The analysis of variance identity can be written as follow:

n 5
E (v =) +
i=

/

SSi: Regression sum of squares
SSg: Error sum of squares

Total corrected sum of squares
SS+ =SSy + SS¢



Analysis of VVariance Approach to Test Significance of Reqression

Table 11-3  Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy
Regression SSp = B|Sx}. 1 MS, MS,/ MS
Error SS; = S8y — P15, n—2 MS;;

Total SST n—1

Note that MS; = G2,

g SSH/l_ MS
O SSg/(n—2) MSg




Table 11-1

Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x(%) ¥(%)
1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 146 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42
10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 9341
19 1.43 94.98
20 0.95 87.33

SS; = 173.38, B, = 14.947,
S, = 10.17744

SSk = B1Sy, = (14.947)10.17744 = 152.13

SSg = 8857 — 88 = 173.38 — 152.13 = 21.25

The analysis of variance for testing Hy: B; = 0

The test statistic is fy = MSy/MSg = 152.13/1.18 = 128.86.

that the P-value is P = 1.23 X 1077, so we conclude that B, is not zero.



The regression equation is Y = f#, +8,X

Predictor Coef Se Coef T P
Constant 12.857 1.032 ? ?
X 2.3445 0.115 ?

Analysis of Variance

Source DF SS MS F
Regression 1 912.43 ? ?
Residual error 8 17.55 ?
Total 9 929.98

(a) Fill in the missing information. You may use bounds for the P-values.
(b) Can you conclude that the model defines a useful linear relationship?

(c) What is your estimate of ¢?



. TABLE - V Percentage Pointst,, of the t Distribution

< A0 5 10 05 025 o1 005 0025 001 0005

325 1.000 1078 6314 12.706 31.821 (3657 127.32 318.31 636.62
2 289 Ela 1 886 2.920 4.303 R ] 9925 14.089 23.326 31.508
3 277 .ThS 1.638 2.353 3182 4 541 5.841 T453 10.213 12924
4 27 741 1.533 2.132 2776 3.747 4 604 5.598 T.173 B.610
5 267 oy 1476 2.015 2.571 3.365 4032 4773 5.893 6.E69
] 265 T8 1.440 1.943 2.447 1143 3.707 4317 5.208 5.959
T L2603 711 1415 1.895 2.365 20498 3.499 4.029 4. 785 5408
B 262 06 1.397 1.860 2.306 2896 3.355 3833 4.501 5.041
9 .26l 703 1.383 1.833 2.262 2821 3.250 3.690 4.297 4781
10 L2600 700 1.372 1.812 2328 2764 3169 3.581 4.144 4 587
11 260 a7 1.363 1.796 2.201 2718 3106 3.497 4025 4437
12 259 605 1.356 1.782 2179 2.681 3.055 3428 3.930 4318
13 259 Ja94 1.350 1.771 2. 160 2.650 3.012 3.372 3852 4221
14 258 692 1.345 1.76l 2.145 2.624 2977 3.326 3.TR7 4140
15 J258 A9l 1.341 1.753 2.131 2602 2947 3.286 3.733 4.073
16 258 (690 1.337 1.746 2,120 1583 24921 3.252 3.686 4.015
17 257 JGEG 1.333 1.740 2,110 2567 2898 3.222 3646 3965

18 257 it 1.330 1.734 2.1 2.552 2878 3.197 3.610 3922
19 257 (688 1.328 1.729 2,093 1539 2861 3174 3.579 3883
20 257 687 1.325 1.725 2086 2528 2R45 3153 3.552 3850
21 257 686 1.323 1.721 2.080 2518 2831 3135 3.527 3819
22 256 .686 1.321 L717 2074 2508 2819 3119 3.505 3792
23 256 (685 1.319 1.714 2.069 2500 2E07 3104 3485 3767
24 256 685 1.318 1.711 2.064 2492 2797 3.091 3.467 3745
25 256 684 1.316 1.708 2.060 2485 2787 3.078 3450 3725
26 256 684 1.31% 1.706 2.056 2479 2779 3.067 3435 3707
27 256 684 1.314 1.703 2.052 2473 2771 3.057 3421 3.690
28 256 683 1.313 1.701 2048 24467 2763 3.047 3408 3674
29 256 J6E3 1.311 16949 2.045 2462 2756 3.038 3.396 3659
30 256 J683 1.310 1697 2.042 2457 2750 3.030 3385 3646
40 (255 J681 1.303 1654 2021 2423 2704 2971 3.307 3551
60 254 679 1.296 1.671 2.000 2390 2.660 2915 3.232 3460




11-8 ADEQUACY OF THE REGRESSION MODEL

11-8.1 Residual Analysis
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(@) ) Inequality of variance
d) Nonlinear
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11-8.2 Coefficient of Determination (R?)

R2 — SSp | SSg
SSt SSt
99.9 2.5
2 L]
99 .
- 1.5 .
-‘;3“ 95 1 . .
= @« 05 .
a 80 © . . g o
‘© - = 0 v r
5 50 3-05 s ..
z 20 -1 . . .
3 -1.5 .
E bF B .
3 * 2
1 -2.5
87 89 91 93 95 97 99
D'—ll_g —0.9 0.1 11 21 Predicted values, ¥
Residuals Figure 11-11 Plot of residuals versus predicted oxygen

Figure 11-10  Normal probability plot of residuals, purity y, Example 11-7.

Example 11-7.

For the oxygen purity regression model, R?= 0.877; model accounts for 87.7% of the

variability in the data



Adjusted R-Square

SSp
n—K

SSr
n—1

Adjusted R — Square =




Multiple Linear Regression



Example 12-1

Data on pull strength of a wire bond in a semiconductor
manufacturing process, wire length, and die height to
construct an empirical model.



12-1: Multiple Linear Regression Models

Example 12-1

Table 12-2  Wire Bond Data for Example 12-1

Observation  Pull Strength  Wire Length  Die Height Observation  Pull Strength ~ Wire Length Die Height
Number v X X5 Number y X Xa

1 9.95 2 50 14 11.66 2 360
2 24.45 8 110 15 21.65 + 205
3 31.75 L1 120 16 17.89 4 400
4 35.00 10 550 17 69.00 20 600
5 25.02 8 295 18 10.30 1 585
6 16.86 4 200 19 34.93 10 540
7 14.38 2 375 20 46.59 15 250
8 9.60 2 52 21 44.88 15 290
9 24.35 9 100 22 54.12 16 510
10 27.50 8 300 23 56.63 17 590
11 17.08 3 412 24 22.13 6 100
12 37.00 Il 400 25 21.15 5 400
13 41.95 12 500

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-1: Multiple Linear Regression Models

L ] [ ]
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Figure 12-4  Matrix of scatter plots (from Minitab) for the wire bond pull
strength data in Table 12-2.

Figure 12-4 Matrix of scatter plots (from Minitab) for the wire bond pull strength

data in Table 12-2.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-1: Multiple Linear Regression Models

Example 12-1

Specifically, we will fit the multiple linear regression
model

=By + Byx + Boxy + €

where ¥ = pull strength, x; = wire length, and x, = die
height. From the data in Table 12-2 we calculate

n =25, 2_1;— = 725.82

x; = 206, Eu,i 8,294

||M'*

25

E-‘fﬁ = 2306, S x% = 3531,848
i=l1 i=1

L3 L2
> xixip = 17,177, D xip: = 8,008.47,
i=1

© John Wiley & Sons, Inc. Applied Statistics ana rropapiity jor engineers, by IVIontgomery and Kunger.



12-1: Multiple Linear Regression Models

Example 12-1

For the model ¥ = By + Byx; + Bax, + €, the normal equa-
tions 12-10 are

n n

npy + By E}-’fu + B; Z-"fz = E.‘]‘
i= i=

H

" M
Bo EJ g+ B Oxn + B _E%-‘ffj-"l};z = D Xy
i= i=

i=1
. n . n . n i
Bo X Yo+ Bi 2 %X + B DX = XX
i=1 i=1 = i=1
Inserting the computed summations into the normal equa-
tions, we obtain
25, +  206B, + 8204p, = 725.82
206B, + 23963, +  77.177B, = R,008.47

82943, + 77,1776, + 3.531,848p, = 274,816.71

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-1: Multiple Linear Regression Models

Example 12-1

The solution to this set of equations is
Bg = 2.26379, B, = 2.74427, B, = 0.01253
Therefore, the fitted regression equation is

¥ =226379 + 2.74427x + 0.01253x,

Practical Interpretation: This equation can be used to
predict pull strength for pairs of values of the regressor vari-
ables wire length (x,) and die height (x,). This is essentially
the same regression model given in Section 1-3. Figure 1-16

shows a three-dimensional plot of the plane of predicted val-
ues y generated from this equation.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



Table 12-4 Minitab Multiple Regression Output for the Wire Bond Pull Serengeh Darta

Regression Analysis: Strength versus Length, Height

The regression equation is
Strength = 2.26 + 2.74 Length + 0.0125 Height

Predictor Coef SE Coef T P VIF
Constant By 2.264 1.060 2,14 0.044

Length B=2.74427 0.09352 2934  0.000 1.2
Height B,—=0.012528  0.002798 448  0.000 1.2

S = 2.288 R-Sq = 98.1% R-Sq (adj) = 97.9%

PRESS = 156.163 R-Sq (pred) = 97.44%

Analysis of Variance

Source DF 558 MS F P
Regression 2 5990.8 2995.4 572.17 0.000
Residual Error 22 115.2 5.2 -G

Total 24 6105.9

Source DF Seq 55
Length 1 5885.9
Height 1 104.9

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% P1
1 27.663 0.482 (26.663, 28.663) (22.814, 32.512)

Values of Predictors for New Observations

New Obs Length Height
1 8.00 275

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-2: Hypothesis Tests in Multiple Linear Regression

12-2.1 Test for Significance of Regression

Table 12-9  Analysis of Variance tor Testing Significance of Regression in Multiple Regression

Source of Degrees of

Variation Sum of Squares Freedom Mean Square Fy
Regression 55, k MS, MSg/MS;
Error or residual SSE n—p MS¢
Total SST n—1

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-2: Hypothesis Tests in Multiple Linear Regression

R2 and Adjusted R?
The coefficient of multiple determination

_ 35

55,
OSSp SSy

R_"-'

* For the wire bond pull strength data, we find that R? =
SSL/SS+ =5990.7712/6105.9447 = 0.9811.
* Thus, the model accounts for about 98% of the

variability in the pull strength response.

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-2: Hypothesis Tests in Multiple Linear Regression

R2 and Adjusted R?
The adjusted R?is

SSe/(n — p)
S84/(n — 1)

Ry=1- (12-23)

« The adjusted R? statistic penalizes the analyst for
adding terms to the model.

» It can help guard against overfitting (including
regressors that are not really useful)

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.
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12-2: Hypothesis Tests in Multiple Linear Regression

12-2.2 Tests on Individual Regression Coefficients and
Subsets of Coefficients

The hypotheses for testing the significance of any
Individual regression coefficient:

Hy: Bj = BjD
H: Bj + BjD (12-24)

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-2: Hypothesis Tests in Multiple Linear Regression

12-2.2 Tests on Individual Regression Coefficients and
Subsets of Coefficients

The test statistic 1s

T, = G; _1 B_,r'[J _ E_," _ABj[J (12-25)
VaiC;  se(B)

* Reject Hy If [to| >t/ p-
» This is called a partial or marginal test

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-2: Hypothesis Tests in Multiple Linear Regression

Example 12-4

EXAMPLE 12-4 Wire Bond Strength Coefficient Test
Consider the wire bond pull strength data, and suppose that we
want to test the hypothesis that the regression coefficient for x;
(die height) is zero. The hypotheses are

Hﬂ: BE = ﬂ
Hl:BE # 0

The main diagonal element of the (X'X)™" matrix correspon-
ding to B, 1s Ty, = 0.0000015, so the f-statistic in Equation
12-251s

B 0.01253 B
V62O,  \V/(5.2352)(0.0000015)

fo 4.477

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-6: Aspects of Multiple Regression Modeling

Example 12-12

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.

EXAMPLE 12-12

Airplane Sidewall Panels

Sidewall panels for the interior of an airplane are formed in a
1500-ton press. The unit manufacturing cost varies with the
production lot size. The data shown below give the average
cost per unit (in hundreds of dollars) for this product ( v) and
the production lot size (x). The scatter diagram. shown in Fig.
12-11, indicates that a second-order polynomial may be

appropriate.

1.81 1.70 1.65 1.55 .48 1.40
20 25 30 35 40 50)
1.30) 1.26 1.24 1.21 1.20 1.18
60 65 70 75 80 9()

15



12-6: Aspects of Multiple Regression Modeling

1.90
Example 12-11 180
1.70 .
1.60
1.50 .
1.40 .

1.30 -

Average cost per unit, v

1.20 ¢ e °

1.10
Figure 12-11 Data for Example

12-11. 1.00

Figure 12-11 Data 20 30 40 50 &0 70 80 90
for Example 12-11. Lot size, x

16

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-6: Aspects of Multiple Regression Modeling

Example 12-12

Table 12-13

Solving the normal equations X' X3 = X'y gives the fitted
model

7= 2.19826629 — 0.02252236x + 0.00012507x2

Conclusions: The test for significance of regression is shown
in Table 12-13. Since f, = 1762.3 is significant at 1%, we
conclude that at least one of the parameters B, and 3, is not
zero. Furthermore, the standard tests for model adequacy do
not reveal any unusual behavior, and we would conclude that
this is a reasonable model for the sidewall panel cost data.

Test for Significance of Regression for the Second-Order Model in Example 12-12

Source of Sum of Degrees of Mean

Variation Squares Freedom Square fo P-value
Regression 0.52516 2 0.26258 1762.28 2.12E-12
Error 0.00134 0 0.00015
Total 0.5265 11

17

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



12-6: Aspects of Multiple Regression Modeling

Example 12-13

Table 12-16  Analysis of Variance for Example 12-13

Source of Degrees of Mean
Variation Sum of Squares Freedom Square o P-value
Regression 1012.0595 2 506.0297 1103.69 1.02E-18
SSr(B1]Bo) 130.6091 1 130.6091 284.87 4.70E-12
SSe(B2|B1:Bo) 881.4504 | 881.4504 1922.52 6.24E-19
Error 7.7943 17 ().4585
Total 1019.8538 19
18

© John Wiley & Sons, Inc. Applied Statistics and Probability for Engineers, by Montgomery and Runger.



Logistic Regression

O Linear regression often works very well when the response variable is
guantitative.

O We now consider the situation in which the response variable takes on only two
possible values, 0 and 1. These could be arbitrary assignments resulting from
observing a qualitative response.

11 O O OO0 0O

0.2 -

0

Q)
=CD)
Q)
=€)
=CD)
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Logit response function has the following form

E(Y) :
Proportion of 1’s (success) e B
at any value of x " eXp[ (Bt B]x)]

EY)
I—E(Y)

= exp (Bo +Pix) OddS — eﬁﬂ tHX

The quantity Is called the odds. It has a straightforward
Interpretation: If the odds is 2 for a particular value of X,

It means that a success Is twice as likely as a failure at
that value of the regressor x.



O-ring failure for the space shuttle launches prior to the Challenger disaster of January



http://en.wikipedia.org/wiki/File:Challenger_explosion.jpg
http://en.wikipedia.org/wiki/File:Challenger_explosion.jpg

Data -shown below- on launch temperature and O-ring failure for the 24 space shuttle launches
prior to the Challenger disaster of January 1986. Six O-rings were used to seal field joints on
the rocket motor assembly. The following table presents the launch temperatures.

Temperature O-Ring Temperature O-Ring Temperature O-Ring
Failure Failure Failure

53 1 68 0 75 0

56 | 69 0 75 |

57 1 70 0 76 0

63 0 70 | 76 0

66 0 70 1 78 0

67 0 70 | 79 0

67 0 72 0 80 0

67 0 713 0 81 0

“1” in the “O-Ring Failure” column indicates that at least one O-ring failure had occurred
on that launch



Figure: Scatter plot of O-ring failures versus launch temperature for 24 space shuttle flights.

1.0 * o0 ° ®
@
E
©
o 0.5
=
o
0.0 ® ee0ee o0 oo ooee
50 60 70 80

Temperature



Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function:
Response Information

Variable Value
O-Ring F 1
0

Total

Logistic Regression Table

Predictor Coef
Constant 10.875
Temperat —0.17132

Log-Likelithood = -11.515

Logit
Count
7 (Event)
17
24
Odds
SE Coef Z P Ratio
5.703 1.91 0.057
0.08344 —-2.05 0.040 0.84

Test that all slopes are zero: G =5.944, DF = 1, P-Value = 0.015

95%
Lower

0.72

CI
Upper

0.99

The odds ratio is 0.84, so every 1 degree increase in temperature reduces the odds of

failure by 0.84.



O It is interesting to note that all of these data were available prior to
launch.

 However, engineers were unable to effectively analyze the data and use
them to provide a convincing argument against launching Challenger to
NASA managers.

O Yet a simple regression analysis of the data would have provided a
strong quantitative basis for this argument.

[ This is one of the more dramatic instances that points out why engineers

and scientists need a strong background in basic statistical techniques.



Design and Analysis of Experiments

Statistical design of experiments refers to the process of planning the experiment so that
appropriate data will be collected and analyzed by statistical methods, resulting in valid
and objective conclusions. The statistical approach to experimental design is necessary
If we wish to draw meaningful conclusions from the data.

Douglas C. Montgomery



Introduction to Design of Experiments

 An IS a test or a series of tests

« Statistically based experimental design techniques are used
widely in the engineering world
* New process development
* New product development
* Improvement of existing product or process

 “All experiments are designed experiments, some are poorly
designed, some are well-designed”



Engineering Designed Experiments

« Reduce time to design/develop new products
& processes.

* Reduce cost of operation.
 Improve performance of existing processes

 Improve reliability and performance of
products

 Achieve product & process robustness

« Evaluation of materials, design alternatives,
setting component & system tolerances, etc.

Inputs

Controllable factors

x, X, x,
Output
Process ——:-5’

z, 2z, 2,

Uncontrollable factors
General model of a process or



Engineering Designed Experiments

Designed experiments are usually employed sequentially.

v The first experiment with a complex system that has many controllable
variables is often a screening experiment designed to determine those
variables are most important.

v’ Subsequent experiments are used to refine this information and
determine which adjustments to these critical variables are required to
Improve the process.

v" Finally, the objective of the experimenter is optimization, that is, to
determine those levels of the critical variables that result in the best
process performance



Designing Engineering Experiments

Every experiment involves a sequence of activities:

1.

Conjecture — the original hypothesis that motivates the
experiment.

Experiment — the test performed to investigate the conjecture.

. Analysis — the statistical analysis of the data from the

experiment.

Conclusion — what has been learned about the original
conjecture from the experiment. Often the experiment will lead
to a revised conjecture, and a new experiment, and so forth.



Strategy of Experimentation

» Used a lot
« More successful than you might suspect, but there are disadvantages...

« Sometimes associated with the “scientific” or “engineering” method
 Devastated by interaction, also very inefficient

« Statistically designed experiments
 Based on Fisher’s factorial concept



Planning, Conducting & Analyzing an
Experiment

Recognition of & statement of problem
Choice of factors, levels, and ranges
Selection of the response variable(s)
Choice of design

Conducting the experiment

Statistical analysis

Drawing conclusions, recommendations

N o o hR e



The Basic Principles of DOX

« Running the trials in an experiment in random order
 Notion of balancing out effects of “lurking” variables

« Sample size (improving precision of effect estimation, estimation of error or
background noise)

 Replication versus repeat measurements?

 Dealing with nuisance factors



dFixed-Effects Model

JRandom-Effects Model

dRandomized Complete Block Design



Completely Randomized Single-Factor Experiment



Example: A manufacturer of paper used for making grocery bags is interested in improving the
tensile strength of the product. Product engineering thinks that tensile strength is a function of the
hardwood concentration in the pulp and that the range of hardwood concentrations of practical
Interest is between 5 and 20%. A team of engineers responsible for the study decides to investigate
four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to make up six test
specimens at each concentration level, using a pilot plant. All 24 specimens are tested on a
laboratory tensile tester, in random order. The data from this experiment are shown below.

Table 13.1: Tensile strength of paper (psi)

Hardwaod Observations
Concentration (%) 1 2 3 4 5 6 Totals Averages
5 7 8 15 11 9 10 60 10.00
10 12 17 13 18 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17

383 15.96

*The levels of the factor are sometimes called
e Each treatment has six observations or
e The runs are run in order.



Why Randomization?

U By randomizing the order of the 24 runs, the effect of any nuisance variable that
may influence the observed tensile strength is approximately balanced out

O For example, suppose that there i1s a warm-up effect on the tensile testing
machine; that is, the longer the machine is on, the greater the observed tensile
strength. If all 24 runs are made in order of increasing hardwood concentration
(that 1s, all six 5% concentration specimens are tested first, followed by all six 10%
concentration specimens, etc.), any observed differences in tensile strength could
also be due to the warm-up effect

O When statistical significance is observed in a randomized experiment, the
experimenter can be confident in the conclusion that the difference in treatments
resulted in the difference in response. That is, we can be confident that a cause-
and-effect relationship has been found.



Box plots show the variability of the

observations within a treatment (factor

variability between

the

and

treatments.

level)

Boxplot of Tensile strength (psi)

25

204

151

Tensile strength (psi)

10+
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Hardwood concentration (%o)

Changing the hardwood concentration has an effect on tensile strength
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The Analysis of VVariance

v" Suppose there are a different levels of a single factor that we wish to compare. The
levels are sometimes called

v" We may describe the observations by the linear statistical model:

. [=1,2.....a
Vi=wn+ 7+ € ;

o

.
.

I T

il

w 1s a parameter common to all treatments called the overall mean
7; IS @ parameter associated with the ith treatment called the ith
treatment effect

&; 1s a random error component

v" The model could be written as
IF —

o

[ T (S

— —
] r

. N



[

= 1. o

Vg = Wi + € { :

j=1.2,....nm

where W, = p + 1; Is the mean of the ith treatment.

General Notes:
 Each treatment defines a population that has mean p; consisting of the overall mean p

plus an effect 1;

 The errors g; are normally and independently distributed with mean zero and variance
o? . Therefore, each treatment can be thought of as a normal population with mean .
and variance 62

I TABLE - 13-2 Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages
1 Vi1 Yi2 e Vin Vi yl .
2 Yai V2o e Yo Y. T 2.
a yal y.rrZ e y an ya . }"10 .



1 The observations are taken in random order and that the environment (often called the
experimental units) in which the treatments are used Is as uniform as possible, this
experimental design is called a completely randomized design (CRD).

O First, the experimenter could have specifically chosen the a treatments. In this situation, we
wish to test hypotheses about the treatment means, and conclusions cannot be extended to
similar treatments that were not considered. In addition, we may wish to estimate the
treatment effects. This is called the fixed-effects model.

d Alternatively, the a treatments could be a random sample from a larger population of
treatments. In this situation, we would like to be able to extend the conclusions (which are
based on the sample of treatments) to all treatments in the population whether or not they were
explicitly considered in the experiment. Here the treatment effects z; are random variables, and
knowledge about the particular ones investigated is relatively unimportant. Instead, we test
hypotheses about the variability of the z; and try to estimate this variability. This is called the
random-effects, or components of variance model.



II' —

l.

g

e Model for a single-factor experiment.

» 1 Fixed-effects model.

2

4 In the fixed-effects model, the treatment effects z; are usually defined as deviations from
the overall mean, so that

ET!-—U

i=1



Typical Data for a Single-Factor Experiment

H
Treatment Observations Totals Averages Yie = E Vi Vi. = yi/n i=1,2,...,a
_ j=1
1 Yu Yz FYin N1 N1 a  n
2 Y ¥ Van Va. FI' V.. = 2 E yﬂ, -]_; = }:/N
5 A 5 : ==
a Yal a2 v Yan Ya. Fﬂ'
¥.. y.. N = an 1s the total number of observations.

yi.represnt the total of the observation under the ith treatment

yi. represnt the average of the observations under the ith treatment

y..represnt the grand of the observations

y.. represnt the grand mean of all observations.

We are interested in testing the equality of the a Hymi=m="=1,=0

treatment means [, Ky, - - . , K,- We find that this is Hy;: 1, # 0 for at least one i
equivalent to testing the hypotheses



Thus, If the null hypothesis is true, each observation

Hyti=m==1,= consists of the overall mean p plus a realization of
the random error component g; . This Is equivalent
to saying that all N observations are taken from a
normal distribution with mean p and variance &2
Therefore, if the null hypothesis is true, changing
the levels of the factor has no effect on the mean
response.

H;:t; # 0 for at least one {

The total variability in the data is described by the total sum of square

! "

S'STT = E E (.}If - a n a a =
=1 j= ; ; (yy =y =n ;} ¥ =70+ ;} ;1 (vy = ¥2)°

or symbolically

_ )2 The sum of squares identity 1s
V..

=

SST = SSTI"CHII'HCHIS + SSE



The expected value of the treatment sum of squares is

E(SSTreatments) = (ﬂ - 1)0'2 + n 2 'T;?

i=1

and the cxpected valuc of the crror sum of squarcs 1s

E(SSg) = a(n — 1)o?

an — 1 =a— 1+ a(n — 1)
The ratio

MSTrcatmcnts = SSTrcatmcntS/(a o 1)

1s called the mean square for treatments. Now 1f the null hypothesis Hy: 7 = 7, =
o= 1, = 018 true, MSteament 1S an unbiased estimator of o because >, 7; = 0. However,

if H, is true, MS,eument €Stimates o plus a positive term that incorporates variation due to the
systematic difference in treatment means.



MS; = S8Sg/[a(n — 1)]

is an unbiased estimator of o” regardless of whether or not H, is true. We can also show that
M St eaments Ad MSy are independent. Consequently, we can show that if the null hypothesis H,
18 true, the ratio

F. = S‘gTrv.=:a’[mv.=:nt:=./(‘:I - 1) _ MSTrcatmcnts
O 8Sp/[a(n — 1)] MS;

Hymp=m="=1,=0 Reiect H. if F. i tor than f
Hy:1; # 0 {for at least one i €JECL Ho IT o 15 greater than a, a-1, a(n-1)



2

a n y"
SSr= 22 2 Vi~
i=1 j=I

and

=

2
Vi
SS Treatments ?
i=1

_
N

The error sum of squares 1s obtained by subtraction as

SSg = 857 — SSTreatments



The analysis of VVariance for a single-Factor Experiment,
Fixed-Effect Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F,
MS Ireatments
Treatments SSTI:‘E:][IHEHH a—1 ","{‘S‘Treatmentq
‘ ' MS E
Error SSg aln — 1) MS;

Total 5SS an — 1




Table 13.1: Tensile strength of paper (psi)

Hardwood Observations
Concentration (%) 1 2 3 4 5 6 Totals Averages
5 7 8 15 11 9 10 60 10.00
10 12 17 13 18 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17
383 15.96
Hy:t,=T,=7,=17,=0 H,:t, # 0 for at least one i
a = 0.01
4 6 ; y 2
SSr = i
I fgl jgl}J N
2
5 383
(P 4 (8 +--+ (20 - BB _ 51506
24
L
SSTrealmtnts = g§| yj - }?
2 2 2 2 2
60 94 102 127 383
(0 o4) + 02) () @)y

SSE = SSI - SSTrealmtnts
=512.96 —382.79=130.17



fa,a—l,a(n—l) — f0.01,3,20

= 4.94 (From Table)

I TABLE - 13-4 ANOVA for the Tensile Strength Data

Source of Variation Sum of Squares Degrees of Freedom Mean Square  f P-value
Hardwood
concentration 382.79 3 127.60 19.60 3.59E-6
Error 130.17 20 6.51
Total 512.96 23
Confidence Interval
on a Treatment Mean A 100(1 — o1)% confidence interval on the mean of the ith treatment ; is
_ ’MS _ fMS
yi°—t(x/2,a(n—l) nE SuiS.Yi‘-*-tot/Z,a(n—]) nE (13-11)

95% CI

[Va. £ f002520 MS;/n]
[21.167 +(2.086)/6.51/6]

19.00 psi < 1y £23.34 psi




Confidence Interval

on a Difference in A 100(1 — o) percent confidence interval on the difference in two treatment means
Treatment Means I, — L, is
i J

_ ’2MS _ IEMS
.}rf‘_yf‘_rﬂfln(u—ll = £ {—:MJ‘ _H,: 5}':'-_}';'-"'3.::;2,;1("—1] - = (13'12)

A 95% CI on the difference in means [1; — 1, 1s computed from Equation 13-12 as follows:

Yi. —¥2. Tlooosan JZMSE:’,”]

-

17.00-15.67+(2.086),[2(6.51) /6 |

or
~1.74< s -y <440



13-1. Consider the following computer output.

Source DF SS MS F  P-value

Factor ? 117.4 39.1 ? ?
Error 16 306.8 ?
Total 19 514.2

(a) How many levels of the factor were used in this experiment?

(b) How many replicates did the experimenter use?

(c) Fill in the missing information in the ANOVA table. Use
bounds for the P-value.

(d) What conclusions can you draw about differences in the
factor-level means?



13-2. Consider the following computer output for an experi-
ment. The factor was tested over four levels.

Source DF SS MS F P-value
Factor ? ? 330.4716 4.42 ?
Error ? ? ?

Total 31 ?

(a) How many replicates did the experimenter use?
(b) Fill in the missing information in the ANOVA table. Use

bounds for the P-value.
(c) What conclusions can you draw about differences in the

factor-level means?



Unbalanced Experiment
In some single-factor experiments, the number of observations taken under each treatment

may be different. We then say that the design is unbalanced. In this situation, slight modi-
fications must be made in the sums of squares formulas. Let n; observations be taken under
treatment i (i =1,2,..., a), and let the total number of observations N = E; n;. The compu-
tational formulas for §5 and SSticaimens are as shown in the following definition.

Computing Formulas

for ANOVA: Single The sums of squares computing formulas for the ANOVA with unequal sample sizes
Factor with Unequal n. in each treatment are
Sample Sizes ! P 2
SSr=3% Y y; -2 (13-13)
i=1j=1 N
a ?_ 3
SSTIE.ELTIHE:ME = E J:;j - yN (13-14)

and

SSE = SST - SSTrcaeru:nts (13-15)




MULTIPLE COMPARISONS FOLLOWING THE ANOVA

When the null hypothesis H,: T, =T, =---= 1T, = 0 is rejected in the ANOVA, we know that
some of the treatment or factor-level means are different. However, the ANOVA does not
identify which means are different. Methods for investigating this issue are called multiple
comparisons methods.

Fisher’s least significant difference (LSD) method

The Fisher LSD method compares all pairs of means with the null hypotheses Hj: W, =t ;
(for all i # j) using the 7-statistic

Yi- = Yj-

ty = —=L=
[2ms,
n

Assuming a two-sided alternative hypothesis, the pair of means y; and pt; would be declared
significantly different if

[%.-3,/>LsD
where LSD, the least significant difference, is
Least Significant

Difference for

Multiple LSD = or2.afn—1)
Comparisons n

2MS;

(13-16)

If the sample sizes are different in each treatment, the LSD is defined as

LSD = Il’HE,N—a JMSE (l + L)
1n; n,j




Fisher’s least significant difference (LSD) method

Exa mple 13-2 We apply the Fisher LSD method to the hardwood concentration experiment. There are a =4
means, n =6, MS; =6.51, and 1 555 5y = 2.086. The treatment means are
v,.=10.00 psi ¥>.=15.67 psi
y3.=17.00 psi Vi.=21.17 psi
The value of LSD is LSD = #3520+ 2MSg /n = 2.0861{2(6.5])3'6 = 3.07. Therefore, any pair of treatment averages

that differs by more than 3.07 implies that the corresponding pair of treatment means are different.
The comparisons among the observed treatment averages are as follows:

4vs.1=21.17-10.00=11.17 > 3.07
4vs.2=21.17-15.67= 5.50>3.07
4vs.3=21.17-17.00= 4.17 > 3.07
3vs.1=17.00-10.00= 7.00> 3.07
3vs.2=17.00-15.67=1.33<3.07
2vs.1=15.67-10.00 = 5.67 > 3.07

5% 10% 15% 20%
o 8 g
0 5 10 15 20 25 psi

FIGURE 13-2 Results of Fisher's LSD method in Example 13-2.



RESIDUAL ANALYSIS AND MODEL CHECKING
O The normality assumption can be checked by constructing a normal probability
plot of the residuals

O To check the assumption of equal variances at each factor level, plot the residuals
against the factor levels and compare the spread in the residuals

—
18]
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Residual value
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o -4

h ) 0 ) A : FIGURE 13-5 Plot of residuals versus factor
B B levels (hardwood concentration). FIGURE 13-6 Plot of residuals versus y,.

Residual value

FIGURE 13-4 Normal probability plot of residuals
from the hardwood concentration experiment.



Problem 13-6. In “Orthogonal Design for Process Optimization and Its Application to Plasma
Etching” (Solid State Technology, May 1987), G. Z. Yin and D. W. Jillie described an experiment
to determine the effect of C,F, flow rate on the uniformity of the etch on a silicon wafer used In
Integrated circuit manufacturing. Three flow rates are used in the experiment, and the resulting
uniformity (in percent) for six replicates follows.

C,F, Flow Observations

(SCCM) 2 3 4 5 6
125 2.7 4.6 2.6 3.0 3.2 3.8
160 4.9 4.6 5.0 4.2 3.6 4.2
200 4.6 3.4 2.9 3.5 4.1 5.1

(a) Does C,F,flow rate affect etch uniformity? Construct box plots to compare the
factor levels and perform the analysis of variance. Use a = 0.05.
(b) Do the residuals indicate any problems with the underlying assumptions?



Problem 13-7. The compressive strength of concrete is being studied, and four different
mixing techniques are being investigated. The following data have been collected.

Mixing
Technique Compressive Strength (psi)
1 3129 3000 2865 2890
2 3200 3300 2975 3150
3 2800 2900 2985 3050
4 2600 2700 2600 2765

(a) Test the hypothesis that mixing techniques affect the strength of the concrete. Use o = 0.05.
(b) Find the P-value for the F-statistic computed in part (a).
(c) Analyze the residuals from this experiment.



The Random-Effects Model

d In many situations, the factor of interest has a large number of possible levels. The
analyst is interested in drawing conclusions about the entire population of factor
levels. If the experimenter randomly selects a of these levels from the population of
factor levels, we say that the factor is a random factor. Because the levels of the
factor actually used in the experiment are chosen randomly, the conclusions reached
are valid for the entire population of factor levels.

1 Notice that this is a very different situation than the one we encountered in the fixed-
effects case in which the conclusions apply only for the factor levels used in the

experiment.



ANOVA AND VARIANCE COMPONENTS

The linear statistical model 1s

i=1,2,...,a
Y, =U+T,+t€;9 . (13-18)
j=L1L2,...,n
where the treatment effects T; and the errors €; are independent random variables. Note that
the model is identical in structure to the fixed-effects case, but the parameters have a different
interpretation. If the variance of the treatment effects T; is o7, by independence the variance
of the response is

V(Y;)=0:+0 (13-19)

The variances Gf and o? are called variance components, and the model, Equation 13-19, is
called the components of variance model or the random-effects model. To test hypotheses
in this model, we assume that the errors €; are normally and independently distributed with

mean zero and variance ¢~ and that the treatment effects T; are normally and independently
distributed with mean zero and variance 62.*

“The assumption that the {t,} are independent random variables implies that the usual assumption of
", T = 0 from the fixed-effects model does not apply to the random-effects model.




ANOVA AND VARIANCE COMPONENTS

For the random-effects model, testing the hypothesis that the individual treatment effects
are zero is meaningless. It is more appropriate to test hypotheses about o-. Specifically,

H, 62=0 H:0:>0
If G% = (), all treatments are identical; but 1f 0'% > 0, there 1s variability between treatments.
The ANOVA decomposition of total variability is still valid; that is,
S ST - S STI‘E:HI[]]BI’][S + SSE (13'20)

However, the expected values of the mean squares for treatments and error are somewhat dif-
ferent than in the fixed-effects case.

Expected Values of In th d ff del f et letel domized 1
Vean Squares: Ran- n the random-effects model for a single-factor, completely randomized experiment,

dom Effects the expected mean square for treatments is

S8 Treatments
E (MSTreatments) = E( Tl"ﬁdmiﬂntb ) = 02 + ﬂGz
a —

(13-21)

and the expected mean square for error is

E(MSE)zE[ 53¢ ]=02 (13-22)

a(n—l)




. M S Treatments

H, 6:=0 H:c:>0 F MS
E

v" The null hypothesis would be rejected at the a-level of significance if the computed
value of the test statistic fy > f, . ;.1

v' The computational procedure and construction of the ANOVA table for the
random-effects model are identical to the fixed-effects case. The conclusions,

however, are quite different because they apply to the entire population of
treatments.

v Normality assumption on the observations is not required.

6% = MS, (13-24)
and
aly) MS'l'realmemH _ MS!;
0 =

n

(13-25)



S0[EREEES Textile Manufacturing — In Design and Analysis of Experiments, 8th edition (John Wiley, 2012),

D. C. Montgomery describes a single-factor experiment involving the random-effects model in
which a textile manufacturing company weaves a fabric on a large number of looms. The company is interested in
loom-to-loom variability in tensile strength. To investigate this variability, a manufacturing engineer selects four looms
at random and makes four strength determinations on fabric samples chosen at random from each loom. The data are
shown in Table 13-7 and the ANOVA is summarized in Table 13-8.

B TABLE - 13-7 Strength Data for Example 13-4

Observations _ _
Loom 1 ) 3 I Al e - TABLE + 13-8 Analysis of Variance for the Strength Data
1 9% 97 99 9 390 975 Source of Sumof Degreesof Mean
2 91 90 93 92 366 91.5 Variation Squares Freedom Square Jo P-value
3 9% 95 97 95 383 95.8 Looms 89.19 3 29.73 15.68 1.88E-+4
4 95 96 99 98 388 97.0 Error 22.75 12 1.90
1527 95.45 Total 111.94 15

From the analysis of variance, we conclude that the looms in the plant differ significantly in their ability to produce
fabric of uniform strength. The variance components are estimated by 6* =1.90 and

~, 29.73-1.90
C: = 0 1 2 =6.96

Therefore, the variance of strength in the manufacturing process is estimated by

o —

V(Yy) 62+6% =6.96+1.90 = 8.86

Conclusion: Most of the variability in strength in the output product is attributable to differences between looms.




S, =V(¥y) = \/3.86 =2.98 psi .
' / 78 psi Sy =67 =1.90 = 1.38 psi

Process

fallout \ y =95.45 psi
80 8 90 95 100 105 110 psi
LSL 80 85 90 95 100 105 110 psi
(@) LSL
(b)

o If the lower specification limit (LSL) on strength is at o Improved process, reducing the
90 psi, a substantial proportion of the process output is variability in strength has greatly
fallout—that is, scrap or defective material that must reduced the fallout, resulting in lower
be sold as second quality, and so on. cost, higher quality, a more satisfied

o This fallout is directly related to the excess variability customer, and an enhanced competitive
resulting from differences between looms. Variability position for the company

In loom performance could be caused by faulty setup,
poor maintenance, inadequate supervision, poorly
trained operators, and so forth.



13-35. € A textile mill has a large number of looms. Each
loom is supposed to provide the same output of cloth per
minute. To investigate this assumption, five looms are chosen
at random, and their output is measured at different times. The
following data are obtained:

Loom Output (Ib/min)
1 4.0 4.1 4.2 4.0 4.1
2 39 3.8 3.9 4.0 4.0
3 4.1 472 4.1 4.0 3.9
4 3.6 3.8 4.0 39 3.7
5 3.8 3.6 3.9 3.8 4.0

(a) Are the looms similar in output? Use o = 0.05.

(b) Estimate the variability between looms.

(c) Estimate the experimental error variance.

(d) Analyze the residuals from this experiment and check for
model adequacy.



13-36. In the book Bayesian Inference in Statistical Analysis
(1973, John Wiley and Sons) by Box and Tiao, the total product
yield for five samples was determined randomly selected from
each of six randomly chosen batches of raw material.

Batch Yield (in grams)
| 1545 1440 1440 1520 1580
2 1540 1555 1490 1560 1495
3 1595 1550 1605 1510 1560
4 1445 1440 1595 1465 1545
5 1595 1630 1515 1635 1625

6 1520 1455 1450 1480 1445

(a) Do the different batches of raw material significantly affect
mean yield? Use oo =0.01.

(b) Estimate the variability between batches.

(c) Estimate the variability between samples within batches.

(d) Analyze the residuals from this experiment and check for
model adequacy.



Randomized Complete Block Design

O In many experimental design problems, it is necessary to design the experiment so
that the variability arising from a nuisance factor can be controlled.

L The paired t-test is a procedure for comparing two treatment means when all
experimental runs cannot be made under homogeneous conditions.

O The paired t-test is a method for reducing the background noise in the experiment by
blocking out a nuisance factor effect.

L The randomized block design is an extension of the paired t-test to situations where
the factor of interest has more than two levels; that is, more than two treatments must
be compared.



Randomized Complete Block Design

Block 1 Block 2 Block 3 Block 4

The design is called a RCBD because each block is large

t t £ ¢

; ; ; ; enough to hold all the treatments and because the actual
t t t f assignment of each of the three treatments within each
: : : ’ block is done randomly

FIGURE 13-9 A randomized complete block design.

- TABLE « 13-9 A Randomized Complete Block Design

Treatments Block (Girder) . . .
(Method) ; 5 3 1 The observations in this table, say, y;;, represent the
1 Y, Vo i Vi response obtained when method i is used on girder j.
2 Yau Y Y3 Va4

3 3'?3[ }532 y33 yJ-—l



. TABLE « 13-10 A Randomized Complete Block Design with a Treatments and » Blocks

Blocks
Treatments 1 2 - b Totals Averages
1 Ju Y12 T Yib M- V-
2 Y21 Y22 e Y2 Y- Ya-
a Yal Ya2 e Yab Va- Ya-
Totals Va Va e Vb y..
Averages Vo Va e Vo y..

The general procedure for a RCBD consists of selecting b blocks and running a complete
replicate of the experiment in each block. The data that result from running a RCBD for
investigating a single factor with a levels and b blocks are shown in Table 13-10. There are a
observations (one per factor level) in each block,|and the order in which these observations are

run 1s randomly assigned within the block.

We now describe the statistical analysis for the RCBD. Suppose that a single factor with a
levels is of interest and that the experiment 1s run in b blocks. The observations may be repre-
sented by the linear statistical model

i=12,...,a

Y,=u+1,4+B,+¢; P=12b (13-26)
where |1 is an overall mean, T, is the effect of the ith treatment, 3, is the effect of the jth block,
and € is the random error term, which is assumed to be normally and independently distrib-
uted with mean zero and variance °. Furthermore, the treatment and block effects are defined
as deviations from the overall mean, so 2;, 7,=0 and ZLI B, =0. This was the same type of
definition used for completely randomized experiments in Section 13-2. We also assume that
treatments and blocks do not interact. That 1s, the effect of treatment i is the same regardless
of which block (or block<) in which it 1s tested. We are interested in testing the equality of the
treatment effects.



ANOVA Sums

of Squares lden-
tity: Randomized
Complete Block
Experiment

Hyt=1=--=1,=0 H,:7t, # 0 at least one i

The analysis of variance can be extended to the RCBD. The procedure uses a sum of
squares identity that partitions the total sum of squares into three components.

The sum of squares identity for the randomized complete block design is

ii(}’ﬁ_?"f:bg(i*—?"f "‘ﬂi (if‘i-)

i=1 j=1 j=1

2

a b B B 2
+3 2 (yi =y -5 +7.) (13-27)

i=1 j=1

or symbolically
SST = SSTIEﬂtI'ﬂEI'ItH + SSBI'DC]CS +S8§ E




Expected Mean
Squares: Randomized
Complete Block
Experiment

Therefore, if the null hypothesis H is true so that all treatment effects T; = 0, MS1 caumens 1S aN
unbiased estimator of 67, and if H, is false, MS ., mens OVeErestimates 6°. The mean square for
error is always an unbiased estimate of 6°. To test the null hypothesis that the treatment effects

are all zero, we use the ratio

Fy

which has an F-distribution with a — 1 and (a — 1)(b — 1) degrees of freedom 1f the null hypoth-
esis 18 true. We would reject the null hypothesis at the a-level of significance if the computed

— M STre atments
MS

value of the test statistic in Equation 13-28 18 f, > f, . 1. (a-1)5-1)-

(13-28)



Computing
Formulas for
ANOVA:
Randomized Block
Experiment

and

a b
SSr =22 i~
i=1 j=1
1 a
SSTreatments = Z Yi-

b i

12
SSBlocks = —Z }’ozj -
a j=

o

ab

2
y-.

ab

y-.

ab

SSE = SST - SSTreatments - SSB[DCkS

. TABLE - 13-11 ANOVA for a Randomized Complete Block Design

The computing formulas for the sums of squares in the analysis of variance for a
RCBD are

(13-29)

(13-30)

(13-31)

(13-32)

Source of Degrees of

Variation Sum of Squares Freedom Mean Square F,
Treatments SS Treatments a—1 S§ Treatments M STreatrnents

a— 1 M S E
Blocks S8 Blocks h—1 SSBlocks
b-1
Error SS¢ (by subtraction) (a-D(b-1) SSg
(a-1)b-1)

Total 5SS ab -1




Fabric Strength  An experiment was performed to determine the effect of four different chemicals
on the strength of a fabric. These chemicals are used as part of the permanent press finishing process.
Five fabric samples were selected, and a RCBD was run by testing each chemical type once in random order on each
fabric sample. The data are shown 1n Table 13-12. We test for differences in means using an ANOVA with oc =0.01.

B TABLE ¢ 13-12 Fabric Strength Data—Randomized Complete Block Design

Fabric Sample Treatment Totals  Treatment Averages
Chemical Type 1 2 3 4 5 Yi. ¥i.
| 1.3 1.6 0.5 1.2 1.1 5.7 1.14
2 2.2 24 0.4 2.0 1.8 8.8 1.76
3 1.8 1.7 0.6 1.5 1.3 6.9 1.38
4 3.9 44 2.0 4.1 34 17.8 3.56
Block totals y.; 9.2 10.1 3.5 8.8 7.6 39.2(y..)

Block averages y.; 2.30 2.53 0.88 2.20 1.90 1.96(y..)




12 - 2
$5, =332 —% =(1.3) +(1.6) +---+(3.4) —% = 25.69

i=1 j=1

S = 3 Vi Y (5.7) +(8.8)" +(6.9)" +(17.8)° ) (39.2)° o
i=1 b ﬂb 5 20

o 2 2 2 2 2 2
Sy = 3 Y Y (9.2) +(10.1) +(3.5) +(8.8) +(7.6)° (39.2) 6,60
j=1 il ﬂb 4 20‘

SSE = 8857 — SSBiocks — SSTreatments = 23.69 —6.69 —18.04 = 0.96

f;) - 75.13 > ﬁ).01,3,12 = 5.95

we conclude that there is a significant difference in the chemical

Stat Graph View Help Assistant Additional Tools
) types so far as their effect on strength is concerned.
Regression > — :
ANOVA b L One-Way..
DOE b = Analysis of Means...
Control Charts P ath Balanced ANOVA...
Quality Tools » General Linear Model P A Fit General Linear Model...
Reliability/Survival » Mixed Effects Model » :i: e —
Predictive Analytics » L Fully Nested ANOVA... LY Predict..
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Time Series | 2 L_J
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Tables
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Table 13-14 Computer Output for the Randomized Complete Block Design in Example 13-5

Factor Type Levels  Values

Chemical fixed 4 1 2 3 4

Fabric S fixed 5 1 2 3 4 5
Analysis of Variance for Strength

Source DF SS MS F P

Chemical 3 18.0440 6.0147 75.89  0.000

Fabric 4 6.6930 1.6733 21.11 0.000

Error 12 0.9510 0.0792

Total 19 25.6880

F-test with denominator: Error
Denominator MS = 0.079250 with 12 degrees of freedom

Numerator DF MS F P
Chemical 3 6.015 75.89  0.000
Fabric S 4 1.673 21.11 0.000




We illustrate Fisher’s LSD method. The four chemical type averages from Example 13-5 are:

Each treatment average uses b =5 observations (one from each block). We use o0 =0.05, so
to.02s12 = 2.179. Therefore, the value of the LSD is

{ 2(0.08
LSD — f0_025.|2 2MbSE — 2179 ( 5 ) — 039

Any pair of treatment averages that differ by 0.39 or more indicates that this pair of treatment
means is significantly different. The comparisons follow:

4vs. 1=y,.-%.=3.56—1.14=2.42>0.39
4vs.3=%,.—9,.=3.56—1.38=2.18 > 0.39
4vs.2=y,.—¥,.=3.56—1.76 = 1.80 > 0.39
2vs. 1=y,.—y.=1.76-1.14 = 0.62 > 0.39
2vs.3=y,.— ;.= 1.76-1.38 = 0.38 < 0.39
3vs. 1=y5.— .= 1.38=1.14 = 0.24 < 0.39

Chemical type

R 1 N S

FIGURE 13-10 Results of Fisher’s LSD method.



RESIDUAL ANALYSIS AND MODEL CHECKING
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FIGURE 13-11 Normal probability
plot of residuals from the randomized

complete block design.
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FIGURE 13-14 Residuals versus y; from the
randomized complete block design.



Residuals Versus Fabric sample(block)
(response is Strength)
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Fabric sample(block)

When treated with the four chemicals, there is some indication
that fabric sample (block) 3 has greater variability in strength
than the other samples

Residual

Residuals Versus Chemical type
(response is Strength)
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Chemical type

Chemical type 4, which provides the greatest strength,
also has somewhat more variability in strength

Follow-up experiments may be necessary to confirm these
findings if they are potentially important




13-42. Consider the following computer output from a RCBD.

Source DF SS MS F P
Factor ? 193.800 64.600 ? ?
Block 3 464.218 154.739

Error ? ? 4.464

Total 15 698.190

(a) How many levels of the factor were used in this experiment?

(b) How many blocks were used in this experiment?

(c) Fill in the missing information. Use bounds for the P-value.

(d) What conclusions would you draw if ot = 0.05? What would
you conclude if e =0.01?



13-48. In Design and Analysis of Experiments, 8th edition
(John Wiley & Sons, 2012), D. C. Montgomery described an
experiment that determined the effect of four different types
of tips in a hardness tester on the observed hardness of a metal
alloy. Four specimens of the alloy were obtained, and each tip
was tested once on each specimen, producing the following data:

Specimen
Type of Tip 1 2 3 4
1 9.3 0.4 9.6 10.0
2 0.4 93 0.8 9.9
3 9.2 9.4 9.5 9.7
4 9.7 9.6 10.0 10.2

(a) Is there any difference in hardness measurements between
the tips?

(b) Use Fisher’s LSD method to investigate specific differ-
ences between the tips.

(c) Analyze the residuals from this experiment.



14

Design of Experiments
with Several Factors



Chapter Learning Outcomes

 Design and conduct engineering experiments involving several factors using the
factorial design approach

O Analyze and interpret main effects and interactions

1 Understand how to use the ANOVA to analyze the data from these experiments

1 Assess model adequacy with residual plots

1 Use the two-level series of factorial designs

1 Understand how to run two-level factorial design in blocks

1 Design and conduct two-level fractional factorial designs

 Use center points to test for curvature in two-level factorial designs

1 Use response surface methodology for process optimization experiments



O We will focus on experiments that include two or more factors that the
experimenter thinks may be important.

O A factorial experiment is a powerful technique for this type of problem.
Generally, in a factorial experimental design, experimental trials (or runs) are
performed at all combinations of factor levels.

O For example, if a chemical engineer is interested in investigating the effects of
reaction time and reaction temperature on the yield of a process, and if two
levels of time (1.0 and 1.5 hours) and two levels of temperature (125 and 150°F)
are considered important, a factorial experiment would consist of making
experimental runs at each of the four possible combinations of these levels of
reaction time and reaction temperature.



Controllable factors

Il IE IP
Input Output
SMT Process
(printed circuit boards) (defects, y)
Zl 22 zq

Uncontrollable (noise) factors

The uncontrollable factors noise factors

Optimization Experiment

In a characterization experiment, we are interested in determining which factors affect
the response. A logical next step is to determine the region in the important factors that
leads to an optimum response. For example, if the response is cost, we look for a region
of minimum cost. This leads to an optimization experiment.




Factorial Experiment

L When several factors are of interest in an experiment, a factorial experiment should be
used.

By , we mean that in each complete trial or replicate of the
experiment, all possible combinations of the levels of the factors are investigated.

O Thus, if there are two factors A and B with a levels of factor A and b levels of
factor B, each replicate contains all ab treatment combinations.

O The effect of a factor is defined as the change in response produced by a change
In the level of the factor. It is called a main effect because it refers to the primary

factors in the study.




O Factorial experiment with two factors, A and B, each at two levels
(A|OW’ Ahigh’ Blow’ Bhigh)

O The main effect of factor A is the difference between the average response
at the high level of A and the average response at the low level of A.

30440 10+20

A 20
. TABLE - A Factorial Experiment 2 2
with Two Factors
Factor B p_ 20440 10430 _
Factor A Biow Bhigh 2 2
Alnw 10 20

Auigh 30 40



Factor B

Factor A Bmw Bhigh
Ajow 10 20
Ahi* h 30 0

 When the difference in response between the levels of one factor is not the
same at all levels of the other factors. When this occurs, there is an interaction
between the factors

J At the low level of factor B, the A effect is A=30-10=20

O At the high level of factor B, the A effect is A=0-20=-20

Because the effect of A depends on the level chosen
for factor B, there is interaction between A and B.




O When an interaction is large, the corresponding main effects have very little
practical meaning. For example, the main effect of A as

30+0 10+20 _
2 2

———

We conclude that there 1s no factor A effect.

A= 0

However, when we examined the effects of A at
different levels of factor B, we saw that this was not
the case. The effect of factor A depends on the levels
of factor B. Thus, knowledge of the AB interaction

IS more useful than knowledge of the main effect. A
significant interaction can mask the significance of
main effects.

Factor B

Factor A Blow Bhigh
Ajow 10 20
Ahigh 30 0




Factor A Biow Byign
Alnw 1 0 20

Observation

_ 20430 10+40 _

AB 0
2 2

50
40 ® Bhigh
> /. B
20 ./
10 o

0

Ajow Apigh
Factor A

Factorial experiment, no interaction.

Factor B
Factor A B]l]w Bh]gh
AIOW -I-D 20
Ahlgh 30 0
20430 10+0
_ AB="""0 =20
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— Factorial experiment, with interaction.



50 50

. Three-dimensional surface plot o
.5 30 /o Biow é 30 o Biow
g 20 o/ g o )
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A\ow Amgh Alow Factor A Amgh
Factorial experim Factorial experiment, with interaction.

a ~02 B 1

~0.6 7 ~0.6 -0.6
-0.2 oo 71 9o -02 g -1 B
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L The slope of the plane in the A and B directions is proportional to the main effects
of factors A and B, respectively

O The effect of interaction in these data Is to “twist” the plane so that there is
curvature in the response function.

———

Factorial experiments are the only way to discover interactions between variables.




An alternative to the factorial design that is (unfortunately) used in practice is to change the
factors one at a time rather than to vary them simultaneously. To illustrate this one-factor-at-a-
time procedure, suppose that an engineer is interested in finding the values of temperature and
pressure that maximize yield in a chemical process. Suppose that we fix temperature at 155°F (the
current operating level) and perform five runs at different levels of time, say, 0.5, 1.0, 1.5, 2.0, and

2.5 hours.

80
70

60

Yield (%)

50

0.5 1.0 1.5 2.0 2.5
Time (hr)

This figure indicates that maximum yield is achieved at about 1.7 hours of reaction time.




To optimize temperature, the engineer then fixes time at 1.7 hours (the apparent
optimum) and performs five runs at different temperatures, say, 140, 150, 160, 170,

and 180°F

80
70

60

Yield (%)

50

140 150 160 170 180
Temperature (°F)

Maximum yield occurs at about 155°F. Therefore, we would conclude that running the
process at 155°F and 1.7 hours is the best set of operating conditions, resulting in

yields of around 75%.



The failure to discover the importance of the
shorter reaction times Is particularly
Important because this could have significant
Impact on production volume or capacity,
production planning, manufacturing cost, and
total productivity.

Temperature (°F)

200

190

180

170

160

150

140

95%

90%

80%

70%

B60%

1.0 1.5 2.0 2.5
Time (hr)

FIGURE 14-9 Optimization
experiment using the one-
factor-at-a-time method.

The one-factor-at-a-time approach has failed here because it cannot detect the interaction between
temperature and time. Factorial experiments are the only way to detect interactions. Furthermore,

the one-factor-at-a-time method is inefficient. It requires more experimentation than a factorial,
and as we have just seen, there Is no assurance that it will produce the correct results.



Two-Factor Factorial Experiments



Two-Factor Factorial Experiments

L There are a levels of factor A and b levels of factor B.

L The experiment has n replicates, and each replicate contains all ab treatment
combinations.

U The observation in the ijth cell for the kth replicate is denoted by y;;.

i=12,...,a
Yo = L+ T; +B; +(~r.[3)ﬂ +ex1j=12,...,b
k=12,...,n

where UL 1s the overall mean effect
T; 1s the effect of the ith level of factor A

B, is the effect of the jth level of factor B
(TB); 1s the effect of the interaction between A and B.

€, 1s a random error component having a normal distribution with mean O and variance ©



Statistical analysis of the fixed-effects model

B TABLE Data Arrangement for a Two-Factor Factorial Design

Factor B
1 2 b Totals Averages
L Yo yuz s Yim  Yize Yizor -+ » Yiaw Yib1> Yib2s 72 Vibn Vi Vies
Factor A 2 Yorr Ya12r -+ Voin Y2210 Y2220 -+ 5 Voo Yabi2 Y2b22 <+ 2 Y2bn yz-— J_/’z--
a yall’ )"mz' e yaln yall’ yaZZ’ v yﬂﬁln ynbl’ yabQ’ e yﬂbn ya“ )7(1“
Totals Y- Y. Yep y...
Averages V.. V.. V.- Ve
Notation for Totals
and Means b n v,
_ iee
Vi ZZZ)’U& fee = i1=12,...,a
== bn
a " y
— = — J —
Yj _Zzyyk Y- J=12,..,b
i=1k=1 an
=3 y..= 0 ~1.2 i=1.2....b
y{; _Zy{ﬂ{ yy =1, 2, a, J =1, 4, ’
k=1




The hypotheses that we will test are as follows:

Hy:ty=T,=...=7T,=0 (no main effect of factor A)
H,: at least one T; # 0

Hy:B,=B,=...=B,=0 (no main effect of factor B)
Hl: at leaSt one BJ‘ ?‘-'0 S = z Z (.}u.i.
Hy: (1), =(tf) =...=(tf),» =0 (no interaction) e

H,: at least one (1f3); # 0

ANOVA Sum of
Squares Identity: The sum of squares identity for a two-factor ANOVA is

Two FFactors
a

Za: Zb" ZH: (qu -y ) = an(}i.. —?,,,)2 +an, (?.J-.—f.__)i

i=lj=1k=1 i=

— ni Zb:(y,j Yiee— Y-+ )7...)2 + i zb: i (yijk — yg)

f:lj:l f:lj:lk:l

._.
—.
[

=

or symbolically,
SST - SSA + SSB + SSAB +SSE




Expected Values of
Mean Squares:
Two Factors

SSA SSB SSAB SSE
a-1 " b1  (a=1)(b-1) *ab(n-1)
bni’t,-z aniﬁ?
= SSA sl i=1 SSB 2 j=1
E(MSA)—E(a_l)—G = E(MSB)—E(b_I)_ =
a b 5
{ SSas 2 ! Z Zl (TB)U
= = il
s =, o) e
)
3 SSx 2
E(MSg)=E \ab(n_l))_c




To test that the row factor effects are all equal to zero (H,: T; = 0), we would use the ratio

F Test for Factor A
_ MS,
MS;

Fy

which has an F distribution with @ — 1 and ab(n — 1) degrees of freedom if Hy: T; = 0 is true. This
null hypothesis 18 rejected at the o level of significance if fy > fo o 1.apn - 1)-

to test the hypothesis that all the column factor effects are equal to 0 (H: 3; = 0), we would use the ratio

F Test for Factor B
_ MS,

F. =
"7 MS,

which has an F distribution with b — 1 and ab(n — 1) degrees of freedom if H:[3; = 0 is true.
This null hypothesis is rejected at the o level of significance if fi > fo p-1 a0 -1)-



test the hypothesis H: (Tf3); = 0, which is the hypothesis that all interaction effects are 0, we
use the ratio

F Test for AB
Interaction MS 5

F. =
°7 Ms,

which has an F distribution with (a —1)(b—1) and ab(n —1) degrees of freedom if the
null hypothesis H: (tf3); = 0. This hypothesis is rejected at the a level of significance if

Jo > Jouta-14b - 1ab(n-1)-



It is usually best to conduct the test for interaction first and then to evaluate the main
effects. If interaction is not significant, interpretation of the tests on the main effects
Is straightforward. However, when interaction is significant, the main effects of the
factors involved in the interaction may not have much practical interpretative value.
Knowledge of the interaction is usually more important than knowledge about the

main effects.



Computing Formulas
for ANOVA: Two
Factors

Computing formulas for the sums of squares in a two-factor analysis of variance:

a b n 2
SSr=3 % 3 -t
i=1j=1k=1 abn
a .2 2
Yi. Y.
SS, = — e
4 g’lbn abn

2

b 2
S, = Z Yejo Y.

j=1 an abn

i

a b 2
SSas=2 2, ZiE — 85,4 =553

i-1,=1 n abn

SSE = SST - SSAB - SSA - SSB




. TABLE - ANOVA Table for a Two-Factor Factorial, Fixed-Effects Model

Source of Sum of Degrees of Mean Square F,
Variation Squares Freedom
A treatments S84 a—1 MS, = 594 M3,
a—1 MSE
M.
B treatments SSg b-1 MS; = S35 Sp
b - 1 MSE
. S8z MS 4p
Interaction SS a—1)b-1 MS 5 =
AB ( )( ) AB (ﬂ—]](b—]] MSE
Error SSe ab(n —1) MS; = ab):
ab(n - l]
Total SSr abn —1



Aircraft Primer Paint Aircraft primer paints are applied to aluminum surfaces by two
methods: dipping and spraying. The purpose of using the primer is to improve paint
adhesion, and some parts can be primed using either application method. The process
engineering group responsible for this operation is interested in learning whether three
different primers differ in their adhesion properties. A factorial experiment was performed
to investigate the effect of paint primer type and application method on paint adhesion

B TABLE + Adhesion Force Data

Primer Type Dipping Spraying
4.0,4.5,4.3 54,49,5.6
2 5.6,49,54 5.8,6.1,6.3

3 3.8,3.7.4.0 5.5,5.0,5.0




Primer Type Dipping Spraying Yi--
1 4.0,45,43 (28  54,49,56 28.7
2 5.6,4.9,5.4 (5.9 5.8, 6.1, 6.3 (8.2 34.1
3 3.8,3.7,4.0 (13 5.5,5.0,5.0 (5.5 27.0
Ver 40.2 49.6 89.8 = y...
y*- 2 2 2 (89. |
SSr = Z. 2. kzl Vi — =(4.0)" +(4.5) +---+(5.0) - 5 —1072
e 2 2 2 2
55 2 Vi Y _ (23.?) +(34.1) +(27.0)  (89.8) _ 458
P —1 bn  abn 6
by YR +(49.6)°  (89.8)°
SS methods jg,l an abn 9 18 9
0 b 2 E 2 2 2 2 2
PORIIIED (5 B SR S S (12.8) +(15.9) +(11.5) + +(18.2) +(15.5)
i=lj=1 H ﬂbﬂ 3
— (89'8) —-458-491=0.24
18
S8 =885 =88, pes — — SSicction =10.72 -458 -491-0.24=0.99




Factor Information

Factor Type Levels Values
Method Fixed 2 1,2
Primer type Fixed 3 1,2,3

Analysis of Variance for Force

Source DF SS MS F P
Method 1 4.9089 4.90889 59.70 0.000
Primer type 2 45811 2.29056 27.86 0.000
Method*Primer 2 0.2411 0.12056 1.47 0.269
Error 12 0.9867 0.08222

Total 17 10.7178
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Example: An engineer suspects that the surface finish of metal parts is influenced by the type
of paint used and the drying time. He selected three drying times: 20, 25, and 30 minutes and
used two types of paint. Three parts are tested with each combination of paint type and drying
time. The data are as follow

Drying Time (min)

(a) State the hypotheses of interest in this experiment. Paint 20 25 30
(b) Test the hypotheses in part (a) and draw conclusions using ! 74 73 78
the analysis of variance with o = 0.05. 64 61 85
(c) Analyze the residuals from this experiment 50 44 92
2 92 98 66

86 73 45

* | o 68 88 85
Analysis of Variance for Surface finish

Source DF SS MS F P
Drying time 2 27.44 13.72 0.07 0.930
Paint 1 355.56 355.56 1.90 0.193
Drying time*Paint 2 1878.78 939.39 5.03 0.026

Error 12 2242.67 186.89

Total 17 4504.44
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Mean

Main Effects Plot for Surface finish Interaction Plot for Surface finish
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Example: the effects of cyclic loading frequency and environment conditions on fatigue
crack growth at a constant 22 MPa stress for a particular material. The data follow. The
response variable is fatigue crack growth rate.

Environment
. : Air H,0 Salt H,O
(a) Is there indication that either factor affects crack ol 229 506 100 :
growth rate? Is there any indication of interaction? 2.47 2.05 1.93
Use o = 0.05. 2.48 2.23 1.75
: : : 2.12 2.03 2.06
(b) Analyze the residuals from this experiment. T s 0 10
(c) Repeat the analysis in part (a) using In(y) as the  Frequency 7 68 318 394
response. Analyze the residuals from this new 2.06 3.96 3.98
: 2.38 3.64 3.24
response variable and comment on the results.
01| 224 11.00 9.96
2.71 11.00 10.01
2.81 9.06 9.36
2.08 11.30 10.40




General Factorial Experiments

Many experiments involve more than two factors. In this section, we introduce the case in
which there are a levels of factor A, b levels of factor B, ¢ levels of factor C, and so on,

arranged in a factorial experiment. In general, there are a X b X ¢ --- X n total observations if
there are n replicates of the complete experiment.

For example, consider the three-factor-factorial experiment, with underlying model

Y,‘jk{ =t T+ Bj + Y + (TB)U i3 ('T"Y)ik 3 (B‘Y)J/\

[ i=12.....a
j=12,....b

TAT I o TR
(7BY)j + € BB e
_l=l,2,...,n

Notice that the model contains three main effects, three two-factor interactions, a three-factor
interaction, and an error term. Assuming that A, B, and C are fixed factors -

Note that there must be at least two replicates (n = 2) to compute an error sum of squares.
The F-test on main effects and interactions follows directly from the expected mean squares.
These ratios follow F-distributions under the respective null hypotheses.



. TABLE + Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of Variation = Sum of Squares  Degrees of Freedom  Mean Square Expected Mean Squares F,
ben, T; MS ,
A _
SSA a 1 o — l MSE
. MS
B ss b-1 2, an)B; b
g b1 MS,
bny vi MS
. -1 2, 4aony, Yr C
¢ 53¢ ¢ o T MS,
2 C”Z E(TB)S‘ MS
kY — — +
AR SS.ag (a—=1)bh-=1) o @a-10b-1 MS,
bny, 3 (WY MS ¢
A , —D(c—1 ol + L Vik
C SSac (a=Dc-1) P s
BC e b-1(c—-1) G2 + C”Z E(BT)?& MSpc
(b-1)(c-1) MS;
”Z Z Z(TBT)E&” MS spc
ABC SS e ~1)(b-1)(c-1 MS i o+ ’
ABC (a ) ) (& ) ABC (@b -1)c—1)
Error SS; abe(n - 1) MS,; c*

Total SS4 abcn — 1



S0EREEA Surface Roughness A mechanical engineer is studying the surface roughness of a part pro-
duced in a metal-cutting operation. Three factors, feed rate (A), depth of cut (B), and tool angle (C),
are of interest. All three factors have been assigned two levels, and two replicates of a factorial design are run.

. TABLE ¢ Coded Surface Roughness Data

Depth of Cut (B)
0.025 inch 0.040 inch
Tool Angle (C) Tool Angle (C)
Feed Rate (A) 15° 25° 15° 25° Vieon
9 11 9 10
20 inches per minute 7 10 11 8 75
10 10 12 16
30 inches per minute 12 13 15 14 102




ANOVA

Factor
Feed

Depth
Angle

Analysis of Variance for Roughness

Source

Feed

Depth

Angle

Feed*Depth
Feed*Angle
Depth*Angle
Feed*Depth*Angle
Error

Total

Type
fixed
fixed
fixed

Levels
2
2
2

-« I S S T

15

Values
20

0.025
15

SS
45.563
10.563

3.063
7.563
0.062
1.563
5.062
19.500
92.938

30
0.040
25

MS
45.563
10.563

3.063
7.563
0.062
1.563
5.062
2437

18.69
4.33
1.26
3.10
0.03
0.64
2.08

P
0.003
0.071
0.295
0.116
0.877
0.446
0.188




Example: The quality control department of a fabric finishing plant is studying the effects of
several factors on dyeing for a blended cotton/synthetic cloth used to manufacture shirts.
Three operators, three cycle times, and two temperatures were selected, and three small
specimens of cloth were dyed under each set of conditions. The finished cloth was compared
to a standard, and a numerical score was assigned. The results are shown in the following
table.

(a) State and test the appropriate hypotheses using the analysis of variance with o = 0.05.

(b) Graphically analyze the residuals from this experiment.

Temperature
300° 350°
Operator Operator
Cycle Time 1 2 3 1 2 3
23 27 31 24 38 34
40 24 28 32 23 36 36

25 26 28 28 35 39
36 34 33 37 34 34
50 35 38 34 39 38 36
36 39 35 35 36 31
28 35 26 26 36 28
60 24 35 27 29 37 26
27 34 25 25 34 34




Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Cycle time 2 473,59 236.796 41.38 0.000
Operator 2 17448 87.241 1525 0.000
Temperature 1 39.19 39.185 6.85 0.013
Cycle time*QOperator 4 23096 57.741 10.09 0.000
Cycle time*Temperature 2 9470 47.352 8.28 0.001
Operator*Temperature 2 11.59 5.796 1.01 0.373
Cycle time*Operator*Temperature 4 9452 23.630 413 0.007

Error 36 206.00 5.722

Total 53 1325.04



2K Factorial Designs

Factorial designs are frequently used in experiments involving several factors where
It is necessary to study the joint effect of the factors on a response.

22 DESIGN

High
o o +) |b ab
treatment combination a indicates

that factor A is at the high level
and factor B is at the low level. Treatment A B
The treatment combination with B e

4+ —
both factors at the low level is hh —
represented by (1). ab  + +

low |(1) a

&) Low A High
() (+)

FIGURE The 2?factorial design.



. TABLE + Signs for Effects in the 22 Design

Treatment
Combination

(D

i

b
ab

Factorial Effect
I A B AB
+ — - +
+ + — —
+ _ _
+ + + +

Main Effect of Factor
A:2” Design

A=F0 —Fa. = a+ab_b+(l)= 1 IE_ab_b_(l

2n 2n 2n

Main Effect of Factor
B:2” Design

_ _ _btab a+(1) 1 [E __ j@]
B=yg, —yp_ = . . m b+ab—a (1)

Interaction Effect
AB:2* Design

g @) _at+b_ 1 E’”f(l)—”—?’g_.

2n 2n 2n

Contrast A

Contrast B

Contrast AB



Relationship Between

a Contrast and an
Effect

Sum of Squares for an
Effect

Effect — Co;ir_a}st
n
(Contrast)’
SS =

n2*




Example: A basic processing step in this industry is to grow an epitaxial layer on polished silicon
wafers. The wafers are mounted on a susceptor and positioned inside a bell jar. Chemical vapors are
Introduced through nozzles near the top of the jar. The susceptor is rotated, and heat is applied. These
conditions are maintained until the epitaxial layer is thick enough.

A = deposition time and B = arsenic flow rate.

The two levels of deposition time are — = short and + = long, and the
two levels of arsenic flow rate are — = 55% and + = 59%

. TABLE + The 2° Design for the Epitaxial Process Experiment

Design Factors i
Treatment g Thickness (Lm)
Combination A B AB Thickness (um) Total Average
(1) - — + 14.037 14.165 13.972 13.907 56.081 14.020
a + - - 14.821 14.757 14.843 14.878 59.299 14.825
b - - - 13.880 13.860 14.032 13.914 55.686 13.922
ab - i | 14.888 14.921 14.415 14.932 59.156 14.789
A= [a+tab—b—(1)] ==L [59.299+59.156 - 55.686 - 56.081] = 0.836
on b 1 T a(4)
B=L[b+ab—a—(1)] = [55.686+59.156~59.299 — 56.081] =—0.067
on L 17 2(4)
AB = s Fab+(l)—a—b_
2n - -
AB= ﬁ [59.156 + 56.081 —59.299 —55.686] = 0.032



[a+ab—b-()] _[6.688]

16
b+ab-a-(1)]  [-0.538]
SSp =" = = =0.0181
16
- 92 .
ab+(1)—a—->b 0252
SSap == ( ) — = [ ] = 0.0040
16
2
" ., (56.081+---4+359.156 _
S8 =14.037"+---+14.932° — ( P ) =3.0672
Sum of Degrees of Mean
Source of Variation Squares Freedom Square fo P-Value
A (deposition time) 2.7956 1 2.7956 134.40 7.07 E-8
B (arsenic flow) 0.0181 1 0.0181 0.87 0.38
AB 0.0040 1 0.0040 0.19 0.67
Error 0.2495 12 0.0208

Total 3.0672 15



Models and Residual Analysis
It is easy to obtain a model for the response and residuals from a 2* design by fitting a
regression model to the data. For the epitaxial process experiment, the regression model is

Y=B[}+B1I1+E

because the only active variable is deposition time, which is represented by a coded variable x;.
The low and high levels of deposition time are assigned values x; = —1 and x; = +1, respec-
tively. The least squares fitted model is

$=14.389 + (0'8236)1'1

where the intercept 3, is the grand average of all 16 observations (y) and the slope [3; is one-
half the effect estimate for deposition time. The regression coefficient is one-half the effect
estimate because regression coefficients measure the effect of a unit change in x; on the mean
of Y, and the effect estimate 1s based on a two-unit change from —1 to +1.




Coeftflicient
and Effect

Standard
Error of a
Coefficient

t-statistic for a

effect  y,—y_
2 2

B=

~ 6 1 1 ~ 1
Standard error = — + =C,|—+
P 2 \jnzk" n2k! n2*

Coefficient A N
—y-)/2
= B _(3-7)/ (14-18)
Standard error 3 L
Y ey
n2
. TABLE + Analysis for the Epitaxial Process Experiment
Term Effect Coefficient SE Coefficient t P-Value
Constant 14.3889 0.03605 399.17 0.000
A 0.8360 0.4180 0.03605 11.60 0.000
B —0.0672 —0.0336 0.03605 —(.93 0.369
AB 0.0315 0.0157 0.03605 0.44 0.670




2K DESIGN FOR k >3 FACTORS

(a) Geometric view

Run A B C
1 _ _ _
2 + - -
3 - + -
4 + + -
5 — — +
6 + - +
7 — +
8 + +

(b) 23 design matrix



B TABLE - Algebraic Signs for Calculating Effects in the 2° Design

Factorial Effect
Treatment
Combination 1 A B AB C AC BC ABC

(1) + - - - - - + -
a + + = = = = ar +
b + - + - - + - +
ab + + + - - - - -
c + - - - + - - +

ac + + + +
be + - + - + - + -
abc + + + + + - - +

Main Effect of Factor
A:2° Design

A=Yy4 —Va- =4L [a+ab+ac+abc—(l)—b—c—bc]
n

Main Effect of Factor
B:2° Design

B=yz, — V5 =4L [b+ab+bc+abc—(1)—a—c—ac]

I

Main Effect of Factor
C:2° Design

C=Ye, = Ve = 4L [c+ac+bc+abc—(1)—a—b—ab]
n




Two-Factor
Interaction
Effects:

2 Design

Two-Factor
Interaction
Effect:

2* Design

Three-Factor
Interaction
Effect:

2% Design

AuEi’=i [abc —bc+ab—b—ac+c—a+(1)]
dn

AC = 4i [((D—a+b-ab-c+ac—bc+abe]
n

ﬁ'C=4i |()+a-b-ab—-c—ac+bc+abc|
H

1
ABC = ™ [abc—bc—ac+c—ab+b+a—(l)]
n

Relationship Between
a Contrast and an
Effect

effect _ y,-y_

2 2

Sum of Squares for an
Effect

Coefficient
and Effect
Contrast
Effect = —
n2
) Standard
(Contrast) Error of a
= Coefficient

SS=

n2*

~ G 1 1 ~ |1
tand = ==+t = =6 —
S ard error B \/nzk" oy (4] —%

2




. TABLE « Coded Surface Roughness Data

20 inches per minute

30 inches per minute




It is easy to verify that the other effects are

(contrast,, )2 - (2’?’)2

A n2*
B = 1.625
C = 03875
AB = 1.375
AC = 0.125
BC = -0.625

ABC = 1.125

2(8)

= 45.5625



Term Effect Coefficient SE Coefficient t P-Value
Constant 11.0625 0.3903 28.34 0.000
A 3.3750 1.6875 0.3903 4.32 0.003
B 1.6250 0.8125 0.3903 2.08 0.071
C 0.8750 0.4375 0.3903 1.12 0.295
AB 1.3750 0.6875 0.3903 1.76 0.116
AC 0.1250 0.0625 0.3903 0.16 0.877
BC —0.6250 —0.3125 0.3903 —0.80 0.446
ABC 1.1250 0.5625 0.3903 1.44 0.188

Source of Sum of Degrees of

Variation Squares Freedom  Mean Square fo P-Value
A 45.5625 1 45.5625 18.69 0.0025
B 10.5625 1 10.5625 4.33 0.0709
C 3.0625 1 3.0625 1.26 0.2948
AB 7.5625 1 7.5625 3.10 0.1162
AC 0.0625 | 0.0625 0.03 (.8784
BC 1.5625 1 1.5625 0.64 0.4548
ABC 5.0625 1 5.0625 2.08 0.1875
Error 19.5000 8 2.4375
Total 92.9375 15



. TABLE + 14-18 Computer Analysis for the Surface Roughness Experiment in Example 14-4

Estimated Effects and Coefficients for Roughness

Term Effect Coef StDev Coef T P

Constant 11.0625 0.3903 28.34 0.000
Feed 3.3750 1.6875 0.3903 4.32 0.003
Depth 1.6250 0.8125 0.3903 2.08 0.071
Angle 0.8750 0.4375 0.3903 1.12 0.295
Feed*Depth 1.3750 0.6875 0.3903 1.76 0.116
Feed*Angle 0.1250 0.0625 0.3903 0.16 0.877
Depth*Angle —0.6250 —0.3125 0.3903 —0.80 0.446
Feed*Depth*Angle 1.1250 0.5625 0.3903 1.44 0.188

Analysis of Variance for Roughness

Source DF Seq SS Adj SS Adj MS F P
Main effects 3 59.188 59.188 19.729 8.09 0.008
2-Way interactions 3 0.187 0.187 3.062 1.26 0.352
3-Way interactions | 5.062 5.062 5.062 2.08 0.188
Residual error 8 19.500 19.500 2.437

Pure error 8 19.500 19.500 2.437

Total 15 02.938




Models and Residual Analysis

We may obtain the residuals from a 2“ design by using the method demonstrated earlier for the
2° design. As an example, consider the surface roughness experiment. The three largest effects
are A, B, and the AB interaction. The regression model used to obtain the predicted values is

Y = Bg + lel + Bg)fg + Buxlxz + €

where x, represents factor A, x, represents factor B, and x,x, represents the AB interaction.
The regression coefficients 3, B,, and 3,, are estimated by one-half the corresponding effect
estimates, and [3, is the grand average. Thus,

= 11.0625+(3'?;5)x1 1{1.6225)’1_2 +(1.:’;5)x1x2

=11.0625+1.6875x; +0.8125x, + 0.6875x,x;

Note that the regression coefficients are presented in the upper panel of Table 14-18. The pre-
dicted values would be obtained by substituting the low and high levels of A and B into this
equation. To illustrate this, at the treatment combination where A, B, and C are all at the low

level, the predicted value is

y=11.0625 + 1.6875(—1) + 0.8125(—1) + 0.6875(—1)(—1) = 9.25

Because the observed values at this run are 9 and 7, the residuals are 9 —9.25 =-0.25 and
7 —9.25 = —2.25. Residuals for the other 14 runs are obtained similarly.
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Single Replicate of the 2k Design

 As the number of factors in a factorial experiment increases, the number of effects
that can be estimated also increases.

« For example, a 24 experiment has 4 main effects, 6 two-factor interactions, 4

three-factor interactions, and 1 four-factor interaction, and a 2° experiment

has 6 main effects, 15 two-factor interactions, 20 three-factor interactions, 15

four-factor interactions, 6 five-factor interactions, and 1 six-factor interaction.

O In most situations, the sparsity of effects principle applies; that is, the system is

usually dominated by the main effects and low-order interactions. The three-factor

and higher order interactions are usually neqgligible. Therefore, when the number of

factors is moderately large, say, k > 4 or 5, a common practice is to run only a single

replicate of the 2k design and then pool or combine the higher order interactions as an

estimate of error. Sometimes a single replicate of a 2k design is called an

unreplicated 2k factorial design




Plasma Efch  An article in Solid State Technology [“Orthogonal Design for Process Optimiza-
tion and Its Application in Plasma Etching” (May 1987, pp. 127-132)] describes the application
of factorial designs in developing a nitride etch process on a single-wafer plasma etcher. The process uses C,F, as the
reactant gas. It is possible to vary the gas flow, the power applied to the cathode, the pressure in the reactor chamber,
and the spacing between the anode and the cathode (gap). Several response variables would usually be of interest in
this process, but in this example, we concentrate on etch rate for silicon nitride.
We use a single replicate of a 2* design to investigate this process. Because it is unlikely that the three- and four-
factor interactions are significant, we tentatively plan to combine them as an estimate of error. The factor levels used
in the design follow:

Design Factor . TABLE * 14-19 The 2* Design for the Plasma Etch Experiment
Level Gap Pressure  C,F, Flow Power A B C D Etch Rate
(em)  (mTorr)  (SCCM) (w) (Gap)  (Pressure) (C,F, Flow) (Power) (A/min)
Low(-)  0.80 450 125 275 -1 -1 -1 -1 550
High (+) 1.20 550 200 325 1 -1 -1 -1 669
-1 | -1 -1 604
1 1 -1 -1 650
-1 -1 1 -1 633
1 -1 1 -1 642
-1 1 1 -1 601
1 1 1 -1 635
-1 -1 -1 1 1037
1 -1 -1 1 749
-1 1 -1 1 1052
1 1 -1 1 868
-1 -1 1 1 1075
1 -1 1 1 860
-1 1 1 1 1063
1 1 1 1 729



. TABLE - 14-20) Contrast Constants for the 2* Design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(rH - - + - + + - - + + - + - - +
a + - - - = + + - - + + + + - =
b - + - - + - + -+ - + + - + -
ab + + + - - - - - = - - + + + +
c - - + + - - + -  + + — — + + —
ac + - - + + - - - = + + = - + +
bc - + - + - + - - 4+ — + — + - +
abc + + + + + + + - - - - - - - -
d - - + - + + -+ - — + — + + —
ad + - - - - + +  + o+ - - - - + +
bd - + - - + - + + - + — — + - +
abd + + + - - - -+ o+ + + - - - -
cd - - + + - - + + - — + + - - +
acd + - - + + - -+ o+ - - + + - -
bcd - + - + - + -+ - + — + - + —
abecd + + + + + + + + o+ + + + + + +



Coded Coefficients

Term Effect Coef SE Coef T-Value P-Value VIF
Constant 776.1 11.2 ©8.77 0.000

Gap -101.6 -50.8 11.2  -450 0.006 1.00
Pressure 1.6 -0.8 11.32  -0.07 0.945 1.00
C2F6 flow 7.4 3.7 11.3 0.33 0.757 1.00
Power 306.1 153.1 11.2  13.56 0.000 1.00
Gap*Pressure -7.9 -39 11.3  -0.35 0.741 1.00
Gap*C2F6 flow -249 -12.4 11.2 -1.10 0.321 1.00
Gap*Power -153.6 -76.8 11.32 -6.81 0.001 1.00
Pressure*C2F6 flow -43.9 -21.9 11.3 -1.94 0.109 1.00
Pressure*Power 0.6 -0.3 11.3 -0.03 0.979 1.00
C2F6 flow*Power 2.1 -1 11.2  -0.09 0.929 1.00

Model Summary

S R-sq R-sg(adj) R-sq(pred)

45,1372 98.08%  94.25%

80.37%



Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Model 10 521234 52123 25.58 0.001
Linear 4 416389 104097 51.09 0.000
Gap 1 41311 41311 20.28 0.006
Pressure 1 11 11 0.01 0.945
C2F6 flow 1 218 218 0.11  0.757
Power 1 374850 374850 183.99 0.000
2-Way Interactions 6 104845 17474 8.58 0.016
Gap*Pressure T 248 248 0.12 0.741
Gap*C2F6 flow 1 2475 2475 1.21 0.321
Gap*Power 1 94403 94403 46.34 0.001
Pressure*C2F6flow 1 7700 7700 3.78 0.109
Pressure*Power 1 2 2 0.00 0.979
C2F6 flow*Power 1 18 18 0.01 0.929
Error 5 10187 2037

Total 15 531421



Pareto Chart of the Standardized Effects
(response is C9, oo = 0.05)
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Addition of Center Points to a 2k Design

A potential concern in the use of two-level factorial designs i1s the assumption of linearity in
the factor effects. Of course, perfect linearity is unnecessary, and the 2* system works quite
well even when the linearity assumption holds only approximately. However, a method of
replicating certain points in the 2* factorial provides protection against curvature and allows
an independent estimate of error to be obtained. The method consists of adding center
points to the 2* design. These consist of n . replicates run at the pointx, =0 (G =1, 2, ...,
k). One important reason for adding the replicate runs at the design center is that center
points do not affect the usual effects estimates in a 2* design. We assume that the k factors
are quantitative.



_ nphe (YF —YC)z | Yr—Yc
SSCurvature -

nrp+n 1 1
7 C t. 1
\ V72 Nc )
¢-statistic for Curvature =—> Fl_ }’cl
0
O +1
-1 A

When points are added to the center of the 2* design, the model we may entertain is

Y= BﬁZBQ X+ Y 3B, 6 +zs ¥ +e

E{J

where the B are pure quadratic effects The test for curvature actually tests the hypotheses
HO ZB _0 H]ZBjjiO

Furthermore, if the factorial pomts in the design are unrepheated, we may use the n  center
points to construct an estimate of error with n. — 1 degrees of freedom.

FIGURE 14-26 A 22 design with center points.



Addition of Center Points to a 2k Design

Example 14-6 ProcessYield A chemical engineer is studying the percentage of conversion or yield of a process.

There are two variables of interest, reaction time and reaction temperature. Because she is uncertain

about the assumption of linearity over the region of exploration, the engineer decides to conduct a 2> design (with a single
replicate of each factorial run) augmented with five center points. The design and the yield data are shown in Fig. 14-27.
Table 14-22 summarizes the analysis for this experiment. The mean square error is calculated from the center points
as follows:
Y (i-3) 3 (y-40.46)
Yi—Yc yi —4aU.
SS enter points = 0. 1720
MSy = —FE- = Seben = =] = = 0.0430
nc - 1 nc - 1 ‘4
40.0 41.5
160 1 @ o
S
o 40.3
= 40.5
8 155 0 ®< 40.7
E 40.2
" 40.6
[Sal
FIGURE 14-27 50 1. 393 409 |
The 22 design with
five center points -1 0 +1
for the process
yield experimentin 30 35 40
Example 14-6. A = Reaction time (min)




Coded Coefficients
Term Effect Coef SE Coef T-Value P-Value VIF

Constant 40.425 0.104 389.89 0.000

A 0.650 0.325 0.104 3.13 0.0351.00
B 1.550 0.775 0.104 7.47 0.002 1.00
A*B -0.050 -0.025 0.104 -0.24 0.821 1.00
Ct Pt 0.035 0.139 0.25 0.814 1.00

Practical Interpretation: The analysis of variance indicates that both factors exhibit significant main effects, that
there is no interaction, and that there is no evidence of curvature in the response over the region of exploration. That is,

the null hypothesis H| : Z;IB ; = 0 cannot be rejected.

Analysis of Variance

Source DF AdjSS Adj MS F-Value P-Value
Model 4 2.83022 0.70756 16.45 0.009
Linear 2 2.82500 1.41250 32.85 0.003
A 1 0.42250 0.42250 9.83 0.035
B 1 2.40250 2.40250 55.87 0.002
2-Way Interactions 1 0.00250 0.00250 0.06 0.821
A*B 1 0.00250 0.00250 0.06 0.821
Curvature 1 0.00272 0.00272 0.06 0.814
Error 4 0.17200 0.04300
Total 8 3.00222
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Blocking and Confounding in the 2k Design

A Ideal: Run all experiments in a 2% factorial design under homogenous conditions.
 The “ideal” often is not possible. Experiment will often be “blocked” according to some
extraneous factor:
o Multiple equipment setups
o Different personnel
o Different raw materials
o Temporal conditions change

 Block size may be smaller than the number of runs in a complete replicate

O In analyzing the results, the block effect will be confounded with certain factor effects.



Example: You are agricultural scientist investigating productivity of wheat.

A: Watering (low/high)
B: Sunlight (low/high)
Response: Wheat produced /day

Watering (A)
Sunlight (B) Low watering High watering
Low sunlight Low sunlight
(1) = 50 kg/day (a) = 150kg/day
Low watering High watering
High sunlight High sunlight
(b) = 90 kg/day (ab) =170 kg/day




Bhigh @ i
b ab

Sunlight

(1) a
Eluw ] i
Ao Water Apiah

What if there are two different combines that harvest the
wheat?




“

@® =0Idcombine

@® =0Id combine

_ Sunlight Sunlight
@ = New combine

@ = New combine

(1) 8 (1) -
g

Alow Water Avigh A Water Anigh

BIanw

@® =0Id combine

Sunlight

© = New combine

.l a
low (@] ®
Alow Water Ahigh




Bhigh @ .

Bhi_tgh O O b ab
b ab
: Sunlight
Sunlight
(1) a
Blow .(1) ao Blow . O
Alow Water Ahigh A|°W Water Ahlgh
Contrasts
Contrasts

A (ab+68)+ (a+8)—b—(1) A ab+(at+d) - (b+d) - (1)

B (ab+8) +b—(a+d)— (1) B ab+(b+d)-(a+d)—(1)

AB (ab+6) + (1) —(a+8)—b AB ab + (1) —(a+0) — (b+9)

o Increase productivity between old and new combine



Runs

o P @ Block1l O Block 2
b ab
(1) a
ab b
(1) - Usually confound with the highest
- O order interaction (AB here):
A B AB
(1) -1 -1 +1
a +1 -1 -1
b -1 +1 -1
ab +1 +1 +1
A B AB L=ox;+arx+ -+ a,x,
(1) -1 -1 +1
(1): L=1(0)+1(0) =0 =0
+1 -1 -1
a:L=1(1)+1(0) =1 =1
G . T . 0 b L=1(0)+1(1) =1=1
ab +1 +1 +1 ab: L=1(1)+1(1) =2=0




For a 23 design, how should we choose which experimental

treatments go in each block?

® Block1

@ Block?2 Y

L=ox;+arx +-+ a,x,

- A +
(1): L=1(0)+1(0)+1(0)=0=0 (mod 2) Treatment B C AB AC BC ABC
Combination
a:L=1(1)+1(0)+1(0)=1=1(mod 2) _ — : - = ~ g ;
b:L=1(0)+1(1)+1(0)=1=1(mod 2) b 4 1 1 1 1 B} 1
ab: L=1(1)+1(1)+1(0)=2 =0 (mod 2) c 1 1 1 1 1 1 1
c:L=1(0)+1(0)+1(1)=1=1(mod 2) abc 1 1 1 1 1 1 1
ac: L=1(1)+1(0)+1(1)=2 =0 (mod 2) ) -1 -1 -1 1 1= [ 1 -1
be: L=1(0)+1(1)+1(1)=2 =0 (mod 2) ab 1 1 -1 1 -1 -1 n
abe: L=1(1)+1(1)+1(1)=3=1(mod 2) & 1 -1 1 1 1 1 =
be -1 1 1 -1 -1 1 -1




A shortcut method is useful in constructing these designs. The block containing the treat-
ment combination (1) is called the principal block. Any element [except (1)] in the principal
block may be generated by multiplying two other elements in the principal block modulus 2
on the exponents. For example, consider the principal block of the 2* design with ABC con-
founded, shown in Fig. 14-29. Note that

ab-ac = a*bc = bc

ab-bc = ab*c = ac

ac-bc = abc® =ab
Treatment combinations in the other block (or blocks) may be generated by multiplying one
element in the new block by each element in the principal block modulus 2 on the exponents.

For the 2* with ABC confounded, because the principal block is (1), ab, ac, and bc, we know
that the treatment combination b is in the other block. Thus, elements of this second block are

b-(1) =b
b-ab=ab* =a
b-ac = abe¢

b-bc =b*c =c

Block 1

(1)
ab
ac

be

Block 2

a

b
c

abe

Assignment of the eight
runs to two blocks




Example: Researchers reported on an experiment to minimize variation in blood
glucose levels. The factors were volume of juice intake before exercise (4-8 @),
amount of exercise on a Nordic Track cross-country skier (10-20 min), and delay
between time of juice intake (0-20 min) and the beginning of the exercise period.

If you wish to block for time of day (am vs. pm), how should we choose with
experiments to conduct in the am vs. pm?

Juice (o0z)
A

e}
=
=

Exercise
(min)
B

Delay
{min)
C

Time of
Day

Treatment

10
10

0
0

20

0

20

0

10
10

20
20

20

20

O~ || (WM =
CO | F= (0O | F (00| |CO B

20

20

e A B C AB AC BC ABC
Combination
a 1 -1 -1 -1 -1 1 1
b -1 1 -1 -1 /| -1 i
c -1 -1 1 1 -1 -1 1
abc 1 1 | 1 1 1 1 1
T -1 1 i 1 1 1 1
ab 1 1 | -1 1 -1 -1 -1
ac 1 1 1 -1 1 -1 -1
be -1 1 | 1 -1 -1 1 -1




be abe bed abed

9]

c I cd !
1 |
|
|
|
l

b8
.:’/

(1) a d ad

e = Run in block 1 B

o = Run in block 2

c view

Block 1 Block 2
(1) =3 a =7
ab =7 b =5
ac =6 c =6
bec =8 d =4
ad =10 abe =6
bd =4 bed =7
ed =8 acd =9
abed =9 abd =12

Assignment of the sixteen
runs to two blocks

(b)

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Model 11 80.6875 7.3352 6.90 0.038
Blocks 1 0.0625 0.0625 0.06 0.820
Linear 4 46,2500 11.5625 10.88 0.020
A 1 27.5625 27.5625 2594 0.007
B 1 1.5625 1.5625 1.47 0.292
C 1 3.0625 3.0625 2.88 0.165
D 1 14.0625 14.0625 13.24 0.022
2-Way Interactions 6 34.3750 5.7292 5.39 0.0e2
A*B 1 0.0625 0.0625 0.06 0.820
A*C 1 22.5625 225625 21.24 0.010
A*D 1 10.5625 10.5625 994 0.034
B*C 1 0.5625 0.5625 0.53 0.507
B*D 1 0.5625 0.5625 0.53 0.507
C*D 1 0.0625 0.0625 0.06 0.820
Error 4 42500 1.0625
Total 15 84.9375



Lean Six Sigma

DMAIC
C

\ A |
Define Measure Analyze Improve Control

Define the Quantify the ld?ntify the cause Implement and Maintain the
problem. problem. ofthe probien. verify the solution. solution.

D
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