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Review

Linear and Multiple linear regressions

Fixed-Effect Model

Random-Effects Model

Randomized Complete Block Model

Two-Factor Factorial Experiments

General Factorial Experiments

2k Factorial Designs

Blocking and Confounding in the 2k Design

Fractional Replication of the 2k Design
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DMAIC Roadmap
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 Sampling

 Normality

 Hypothesis testing

 P-Value

 Process Stability

 Measurement system analysis
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How to collect sample data?

What is the sample size?

What are types of samples?

Sampling



Normality



Hypothesis testing



Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10
28.0 28.7 27.9 25.5 22.2 29.1 25.8 21.9 26.3 26.0

26.8 24.2 27.6 16.7 22.9 24.4 19.5 20.4 28.1 24.2
24.7 27.2 22.2 24.4 27.9 32.2 25.8 26.1 26.4 23.8

22.4 24.3 27.7 21.1 26.3 21.3 23.1 23.7 26.9 29.7
23.1 25.9 24.9 27.2 27.7 25.3 21.0 29.1 28.0 23.9
22.3 27.4 31.6 26.2 25.1 24.0 21.4 23.9 26.3 22.3

24.1 24.2 21.9 27.1 23.0 23.2 23.9 25.3 28.8 25.0
22.5 28.4 22.2 25.0 27.6 25.1 18.6 23.3 24.9 25.3
23.9 25.4 24.5 27.2 28.6 24.9 29.1 21.1 21.1 25.9
27.5 24.5 23.3 24.3 28.8 25.2 22.1 20.9 24.0 25.9

Stability-Control Chart



Measurement system analysis 



Repeatability & Reproducibility (R&R)

Total variation

Part-to-part variation Measurement error (Precision)

ReproducibilityRepeatability





Parts Operators Measurement data

Part 1 Operator 1 13

Part 1 Operator 1 13

Part 2 Operator 1 16

Part 2 Operator 1 15

Part 3 Operator 1 15

Part 3 Operator 1 16

Part 4 Operator 1 15

Part 4 Operator 1 15

Part 5 Operator 1 20

Part 5 Operator 1 20

Part 6 Operator 1 22

Part 6 Operator 1 22

Part 7 Operator 1 24

Part 7 Operator 1 25

Part 8 Operator 1 27

Part 8 Operator 1 27

Part 9 Operator 1 29

Part 9 Operator 1 29

Part 10 Operator 1 36

Part 10 Operator 1 35

Part 1 Operator 2 10

Part 1 Operator 2 10

Part 2 Operator 2 12

Part 2 Operator 2 13

Part 3 Operator 2 13

Part 3 Operator 2 12

Part 4 Operator 2 15

Part 4 Operator 2 15

Part 5 Operator 2 16

Part 5 Operator 2 18

Part 6 Operator 2 20

Part 6 Operator 2 20

Part 7 Operator 2 22

Part 7 Operator 2 21

Part 8 Operator 2 21

Part 8 Operator 2 22

Part 9 Operator 2 27

Part 9 Operator 2 26

Part 10 Operator 2 28

Part 10 Operator 2 30

Part 1 Operator 3 11

Part 1 Operator 3 11

Part 2 Operator 3 13

Part 2 Operator 3 13

Part 3 Operator 3 12

Part 3 Operator 3 15

Part 4 Operator 3 12

Part 4 Operator 3 12

Part 5 Operator 3 17

Part 5 Operator 3 18

Part 6 Operator 3 19

Part 6 Operator 3 20

Part 7 Operator 3 21

Part 7 Operator 3 22

Part 8 Operator 3 23

Part 8 Operator 3 24

Part 9 Operator 3 28

Part 9 Operator 3 28

Part 10 Operator 3 31

Part 10 Operator 3 27



 Total Gage R&R should be less than 10%

 Between 10 and 30% is marginable, there is room for improvement

 More than 30%, measurement system is not acceptable



R-Chart=Repeatability. We wish to 

have points on zero line.

Xbar-Chart=Reproducibility. We wish 

to have shape as similar as possible. It 

is ok to have all points outside the 

control limit.





Simple Linear Regression and Correlation







✓ The case of simple linear regression considers a single regressor or 

predictor  “x” and a dependent or response Variable “Y”.

✓ Suppose that the true relationship between “Y” and “x” is a straight line and 

that the observation “Y” at each level of “x” is a random variable

E 𝑌 𝑥 = 𝛽0 + 𝛽1𝑥

✓ Assume each observation is represented by a model

𝑦 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝜖

𝑊ℎ𝑒𝑟𝑒 𝜖 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝑧𝑒𝑟𝑜 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎2



𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒 𝑖𝑠

𝐿 = ෍

𝑖=1

𝑛

𝜖𝑖

2
= ෍

𝑖=1

𝑛

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥)2



𝐿 = ෍

𝑖=1

𝑛

𝜖𝑖

2
= ෍

𝑖=1

𝑛

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥)2



✓ The residual describes the error in the fit of the model to the ith 

observation of yi



The following data represents y is 

the purity of oxygen produced in a 

chemical distillation process, and x 

is the percentage of hydrocarbons 

present in the main condenser of the 

distillation unit. Construct the 

relationship between oxygen purity 

and percentage of hydrogen and 

optimize the process.







Estimator of σ2

✓ There is another unknown parameter in the regression model (σ2) “the 

variance of the error term ε. 

✓ The residual 𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖  are used to obtain an estimate of σ2 

✓ The sum squares of the residuals is called error sum of squares 

Is the total sum 
of squares of 
the response 

variable y



Example

9475113110172155193181240Y

3340.54335.5222015.59.41.6X

a) Fit the simple linear regression model using least squares method

b) Find an estimator of σ2

c) Predict wear when viscosity x = 30

d) Obtain the fitted value of y when x = 22 and calculate the corresponding 

residual

෍ 𝑥𝑖 = 220.5 , ෍ 𝑥𝑖

2
= 7053.67 ෍ 𝑦𝑖 = 1333

෍ 𝑦𝑖𝑥𝑖 = 26864.4

a) y=234.1 - 3.509 x

b) σ2 =398.3

b) y at x =30, y=128.83

b) y at x =22, y=156.902

Residual=172-156.902=-15.098



a) y=234.1 - 3.509 x



Properties of the least square estimators



Hypothesis test in simple linear regression

We would reject the null hypothesis if



Special Case

Accept the null hypothesis is equivalent to conclude that there is no linear 

relationship between x and y.

Accept the null hypothesis



Reject the null hypothesis



𝑎) 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑏) 𝑇𝑒𝑠𝑡 𝑢𝑠𝑖𝑛𝑔 𝛼 = 0.01  𝐻0:  𝛽1 = −0.01 ,  𝐻1:  𝛽1 ≠ −0.01





Analysis of Variance Approach to Test Significance of Regression

✓ A method called the analysis of variance can be used to test the significance 

of regression

✓ The analysis of variance identity can be written as follow:

SSR: Regression sum of squares

SSE: Error sum of squares

Total corrected sum of squares

SST = SSR + SSE



Analysis of Variance Approach to Test Significance of Regression





The regression equation is Y = β0 +β1x

Predictor Coef Se Coef T P

Constant 12.857 1.032 ? ?

X 2.3445 0.115 ?

Analysis of Variance

Source DF SS MS F

Regression 1 912.43 ? ?

Residual error 8 17.55 ?

Total 9 929.98

(a) Fill in the missing information. You may use bounds for the P-values. 

(b) Can you conclude that the model defines a useful linear relationship? 

(c) What is your estimate of σ2 





a) Satisfactory

b) Funnel

Variance increases with x

c) double bow

Inequality of variance

d) Nonlinear

Model inadequacy 



For the oxygen purity regression model, R2 = 0.877; model accounts for 87.7% of the 

variability in the data



𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 =

𝑆𝑆𝑅
𝑛 − 𝐾

𝑆𝑆𝑇
𝑛 − 1

 

Adjusted R-Square



Multiple Linear Regression



Example 12-1

Data on pull strength of a wire bond in a semiconductor 

manufacturing process, wire length, and die height to 

construct an empirical model. 



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-1: Multiple Linear Regression Models

Example 12-1



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-1: Multiple Linear Regression Models

Figure 12-4 Matrix of scatter plots (from Minitab) for the wire bond pull strength 
data in Table 12-2.

4



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-1: Multiple Linear Regression Models

Example 12-1

5



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-1: Multiple Linear Regression Models

Example 12-1

6



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-1: Multiple Linear Regression Models

Example 12-1
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© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.
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© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-2: Hypothesis Tests in Multiple Linear Regression

12-2.1 Test for Significance of Regression

9



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-2: Hypothesis Tests in Multiple Linear Regression

R2 and Adjusted R2

The coefficient of multiple determination

•  For the wire bond pull strength data, we find that R2 = 

SSR/SST = 5990.7712/6105.9447 = 0.9811.

•  Thus, the model accounts for about 98% of the 

variability in the pull strength response.

10



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-2: Hypothesis Tests in Multiple Linear Regression

R2 and Adjusted R2

The adjusted R2 is

•  The adjusted R2 statistic penalizes the analyst for 

adding terms to the model.

•  It can help guard against overfitting (including 

regressors that are not really useful)

11



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-2: Hypothesis Tests in Multiple Linear Regression

12-2.2 Tests on Individual Regression Coefficients and 

Subsets of Coefficients

The hypotheses for testing the significance of any 

individual regression coefficient:

12



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-2: Hypothesis Tests in Multiple Linear Regression

12-2.2 Tests on Individual Regression Coefficients and 

Subsets of Coefficients

The test statistic is

•  Reject H0 if |t0| > t/2,n-p.

•  This is called a partial or marginal test

13



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-2: Hypothesis Tests in Multiple Linear Regression

Example 12-4

14



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-6: Aspects of Multiple Regression Modeling

Example 12-12

15



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-6: Aspects of Multiple Regression Modeling

Example 12-11

Figure 12-11 Data for Example 
12-11.

16



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-6: Aspects of Multiple Regression Modeling

Example 12-12

17



© John Wiley & Sons, Inc.  Applied Statistics and Probability for Engineers, by Montgomery and Runger.

12-6: Aspects of Multiple Regression Modeling

Example 12-13

18



Logistic Regression

 Linear regression often works very well when the response variable is

quantitative.

 We now consider the situation in which the response variable takes on only two

possible values, 0 and 1. These could be arbitrary assignments resulting from

observing a qualitative response.

0
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0.8

1

1.2
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Logit response function has the following form

The quantity is called the odds. It has a straightforward

interpretation: If the odds is 2 for a particular value of x,

it means that a success is twice as likely as a failure at

that value of the regressor x.

Proportion of 1’s (success) 

at any value of x



O-ring failure for the space shuttle launches prior to the Challenger disaster of January

http://en.wikipedia.org/wiki/File:Challenger_explosion.jpg
http://en.wikipedia.org/wiki/File:Challenger_explosion.jpg


“1” in the “O-Ring Failure” column indicates that at least one O-ring failure had occurred 

on that launch

Data -shown below- on launch temperature and O-ring failure for the 24 space shuttle launches 

prior to the Challenger disaster of January 1986. Six O-rings were used to seal field joints on 

the rocket motor assembly. The following table presents the launch temperatures.



Figure: Scatter plot of O-ring failures versus launch temperature for 24 space shuttle flights.



The odds ratio is 0.84, so every 1 degree increase in temperature reduces the odds of 

failure by 0.84.



 It is interesting to note that all of these data were available prior to

launch.

 However, engineers were unable to effectively analyze the data and use

them to provide a convincing argument against launching Challenger to

NASA managers.

 Yet a simple regression analysis of the data would have provided a

strong quantitative basis for this argument.

 This is one of the more dramatic instances that points out why engineers

and scientists need a strong background in basic statistical techniques.



Design and Analysis of Experiments

Statistical design of experiments refers to the process of planning the experiment so that

appropriate data will be collected and analyzed by statistical methods, resulting in valid

and objective conclusions. The statistical approach to experimental design is necessary

if we wish to draw meaningful conclusions from the data.

Douglas C. Montgomery



Introduction to Design of Experiments

• An experiment is a test or a series of tests

• Statistically based experimental design techniques are used 
widely in the engineering world 

• New process development

• New product development

• Improvement of existing product or process

• “All experiments are designed experiments, some are poorly 
designed, some are well-designed”



Engineering Designed Experiments

• Reduce time to design/develop new products 
& processes.

• Reduce cost of operation.

• Improve performance of existing processes

• Improve reliability and performance of 
products

• Achieve product & process robustness

• Evaluation of materials, design alternatives, 
setting component & system tolerances, etc.



Designed experiments are usually employed sequentially.

 The first experiment with a complex system that has many controllable

variables is often a screening experiment designed to determine those

variables are most important.

 Subsequent experiments are used to refine this information and

determine which adjustments to these critical variables are required to

improve the process.

 Finally, the objective of the experimenter is optimization, that is, to

determine those levels of the critical variables that result in the best

process performance

Engineering Designed Experiments



Every experiment involves a sequence of activities:

1. Conjecture – the original hypothesis that motivates the

experiment.

2. Experiment – the test performed to investigate the conjecture.

3. Analysis – the statistical analysis of the data from the

experiment.

4. Conclusion – what has been learned about the original

conjecture from the experiment. Often the experiment will lead

to a revised conjecture, and a new experiment, and so forth.

Designing Engineering Experiments



Strategy of Experimentation 

• “Best-guess” experiments

• Used a lot

• More successful than you might suspect, but there are disadvantages…

• One-factor-at-a-time (OFAT) experiments

• Sometimes associated with the “scientific” or “engineering” method

• Devastated by interaction, also very inefficient

• Statistically designed experiments

• Based on Fisher’s factorial concept



Planning, Conducting & Analyzing an 
Experiment

1. Recognition of & statement of problem

2. Choice of factors, levels, and ranges

3. Selection of the response variable(s)

4. Choice of design

5. Conducting the experiment

6. Statistical analysis

7. Drawing conclusions, recommendations



The Basic Principles of DOX

• Randomization

• Running the trials in an experiment in random order

• Notion of balancing out effects of “lurking” variables

• Replication

• Sample size (improving precision of effect estimation, estimation of error or 
background noise)

• Replication versus repeat measurements? 

• Blocking

• Dealing with nuisance factors



Fixed-Effects Model

Random-Effects Model

Randomized Complete Block Design



Completely Randomized Single-Factor Experiment



Example: A manufacturer of paper used for making grocery bags is interested in improving the

tensile strength of the product. Product engineering thinks that tensile strength is a function of the

hardwood concentration in the pulp and that the range of hardwood concentrations of practical

interest is between 5 and 20%. A team of engineers responsible for the study decides to investigate

four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to make up six test

specimens at each concentration level, using a pilot plant. All 24 specimens are tested on a

laboratory tensile tester, in random order. The data from this experiment are shown below.

•The levels of the factor are sometimes called treatments.

• Each treatment has six observations or replicates.

• The runs are run in random order.

Table 13.1: Tensile strength of paper (psi)



 When statistical significance is observed in a randomized experiment, the

experimenter can be confident in the conclusion that the difference in treatments

resulted in the difference in response. That is, we can be confident that a cause-

and-effect relationship has been found.

 For example, suppose that there is a warm-up effect on the tensile testing

machine; that is, the longer the machine is on, the greater the observed tensile

strength. If all 24 runs are made in order of increasing hardwood concentration

(that is, all six 5% concentration specimens are tested first, followed by all six 10%

concentration specimens, etc.), any observed differences in tensile strength could

also be due to the warm-up effect

By randomizing the order of the 24 runs, the effect of any nuisance variable that

may influence the observed tensile strength is approximately balanced out

Why Randomization?



Changing the hardwood concentration has an effect on tensile strength
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The Analysis of Variance

 Suppose there are a different levels of a single factor that we wish to compare.  The 

levels are sometimes called treatments.

 We may describe the observations by the linear statistical model:

 The model could be written as

μ is a parameter common to all treatments called the overall mean

τi is a parameter associated with the ith treatment called the ith

treatment effect

εij is a random error component



where μi = μ + τi is the mean of the ith treatment. 

General Notes:

 Each treatment defines a population that has mean μi consisting of the overall mean μ 

plus an effect τi

 The errors εij are normally and independently distributed with mean zero and variance 

σ2 . Therefore, each treatment can be thought of as a normal population with mean μi

and variance σ2



 The observations are taken in random order and that the environment (often called the

experimental units) in which the treatments are used is as uniform as possible, this

experimental design is called a completely randomized design (CRD).

 First, the experimenter could have specifically chosen the a treatments. In this situation, we

wish to test hypotheses about the treatment means, and conclusions cannot be extended to

similar treatments that were not considered. In addition, we may wish to estimate the

treatment effects. This is called the fixed-effects model.

 Alternatively, the a treatments could be a random sample from a larger population of

treatments. In this situation, we would like to be able to extend the conclusions (which are

based on the sample of treatments) to all treatments in the population whether or not they were

explicitly considered in the experiment. Here the treatment effects τi are random variables, and

knowledge about the particular ones investigated is relatively unimportant. Instead, we test

hypotheses about the variability of the τi and try to estimate this variability. This is called the

random-effects, or components of variance model.



Model for a single-factor experiment.

Fixed-effects model.

 In the fixed-effects model, the treatment effects τi are usually defined as deviations from

the overall mean, so that



We are interested in testing the equality of the a

treatment means µ1, µ2, . . . , µa. We find that this is 

equivalent to testing the hypotheses



Thus, if the null hypothesis is true, each observation

consists of the overall mean µ plus a realization of

the random error component εij . This is equivalent

to saying that all N observations are taken from a

normal distribution with mean µ and variance σ2.

Therefore, if the null hypothesis is true, changing

the levels of the factor has no effect on the mean

response.

The total variability in the data is described by the total sum of square





Reject H0 if F0 is greater than fα, a-1, a(n-1)  





The analysis of Variance for a single-Factor Experiment, 

Fixed-Effect Model



Table 13.1: Tensile strength of paper (psi)

𝛼 = 0.01



𝑓𝛼,𝑎−1,𝑎(𝑛−1) = 𝑓0.01,3,20 = 4.94 (𝐹𝑟𝑜𝑚 𝑇𝑎𝑏𝑙𝑒)











MULTIPLE COMPARISONS FOLLOWING THE ANOVA





RESIDUAL ANALYSIS AND MODEL CHECKING

 The normality assumption can be checked by constructing a normal probability 

plot of the residuals

 To check the assumption of equal variances at each factor level, plot the residuals 

against the factor levels and compare the spread in the residuals



Problem 13-6. In “Orthogonal Design for Process Optimization and Its Application to Plasma

Etching” (Solid State Technology, May 1987), G. Z. Yin and D. W. Jillie described an experiment

to determine the effect of C2F6 flow rate on the uniformity of the etch on a silicon wafer used in

integrated circuit manufacturing. Three flow rates are used in the experiment, and the resulting

uniformity (in percent) for six replicates follows.

(a) Does C2F6 flow rate affect etch uniformity? Construct box plots to compare the 

factor levels and perform the analysis of variance. Use α = 0.05. 

(b) Do the residuals indicate any problems with the underlying assumptions?



Problem 13-7. The compressive strength of concrete is being studied, and four different

mixing techniques are being investigated. The following data have been collected.

(a) Test the hypothesis that mixing techniques affect the strength of the concrete. Use α = 0.05.

(b) Find the P-value for the F-statistic computed in part (a).

(c) Analyze the residuals from this experiment.



The Random-Effects Model

 In many situations, the factor of interest has a large number of possible levels. The

analyst is interested in drawing conclusions about the entire population of factor

levels. If the experimenter randomly selects a of these levels from the population of

factor levels, we say that the factor is a random factor. Because the levels of the

factor actually used in the experiment are chosen randomly, the conclusions reached

are valid for the entire population of factor levels.

 Notice that this is a very different situation than the one we encountered in the fixed-

effects case in which the conclusions apply only for the factor levels used in the

experiment.



ANOVA AND VARIANCE COMPONENTS



ANOVA AND VARIANCE COMPONENTS



 The null hypothesis would be rejected at the a-level of significance if the computed

value of the test statistic f0 > fα, a-1,a(n-1)

 The computational procedure and construction of the ANOVA table for the

random-effects model are identical to the fixed-effects case. The conclusions,

however, are quite different because they apply to the entire population of

treatments.

 Normality assumption on the observations is not required.





o If the lower specification limit (LSL) on strength is at

90 psi, a substantial proportion of the process output is

fallout—that is, scrap or defective material that must

be sold as second quality, and so on.

o This fallout is directly related to the excess variability

resulting from differences between looms. Variability

in loom performance could be caused by faulty setup,

poor maintenance, inadequate supervision, poorly

trained operators, and so forth.

o Improved process, reducing the

variability in strength has greatly

reduced the fallout, resulting in lower

cost, higher quality, a more satisfied

customer, and an enhanced competitive

position for the company







Randomized Complete Block Design

 In many experimental design problems, it is necessary to design the experiment so

that the variability arising from a nuisance factor can be controlled.

 The paired t-test is a procedure for comparing two treatment means when all

experimental runs cannot be made under homogeneous conditions.

 The paired t-test is a method for reducing the background noise in the experiment by

blocking out a nuisance factor effect.

 The randomized block design is an extension of the paired t-test to situations where

the factor of interest has more than two levels; that is, more than two treatments must

be compared.



The design is called a RCBD because each block is large

enough to hold all the treatments and because the actual

assignment of each of the three treatments within each

block is done randomly

The observations in this table, say, yij, represent the 

response obtained when method i is used on girder j.

Randomized Complete Block Design













we conclude that there is a significant difference in the chemical 

types so far as their effect on strength is concerned.







RESIDUAL ANALYSIS AND MODEL CHECKING



When treated with the four chemicals, there is some indication 

that fabric sample (block) 3 has greater variability in strength 

than the other samples

Chemical type 4, which provides the greatest strength,

also has somewhat more variability in strength

Follow-up experiments may be necessary to confirm these 

findings if they are potentially important









Chapter Learning Outcomes

Design and conduct engineering experiments involving several factors using the

factorial design approach

 Analyze and interpret main effects and interactions

Understand how to use the ANOVA to analyze the data from these experiments

Assess model adequacy with residual plots

Use the two-level series of factorial designs

Understand how to run two-level factorial design in blocks

Design and conduct two-level fractional factorial designs

Use center points to test for curvature in two-level factorial designs

Use response surface methodology for process optimization experiments



 We will focus on experiments that include two or more factors that the

experimenter thinks may be important.

 A factorial experiment is a powerful technique for this type of problem.

Generally, in a factorial experimental design, experimental trials (or runs) are

performed at all combinations of factor levels.

 For example, if a chemical engineer is interested in investigating the effects of

reaction time and reaction temperature on the yield of a process, and if two

levels of time (1.0 and 1.5 hours) and two levels of temperature (125 and 150°F)

are considered important, a factorial experiment would consist of making

experimental runs at each of the four possible combinations of these levels of

reaction time and reaction temperature.



The uncontrollable factors noise factors

Optimization Experiment

In a characterization experiment, we are interested in determining which factors affect

the response. A logical next step is to determine the region in the important factors that

leads to an optimum response. For example, if the response is cost, we look for a region

of minimum cost. This leads to an optimization experiment.



Factorial Experiment

 Thus, if there are two factors A and B with a levels of factor A and b levels of

factor B, each replicate contains all ab treatment combinations.

 The effect of a factor is defined as the change in response produced by a change

in the level of the factor. It is called a main effect because it refers to the primary

factors in the study.

 When several factors are of interest in an experiment, a factorial experiment should be

used.



 Factorial experiment with two factors, A and B, each at two levels

(Alow, Ahigh, Blow, Bhigh)

 The main effect of factor A is the difference between the average response 

at the high level of A and the average response at the low level of A.



 When the difference in response between the levels of one factor is not the

same at all levels of the other factors. When this occurs, there is an interaction

between the factors

 At the low level of factor B, the A effect is

 At the high level of factor B, the A effect is

Because the effect of A depends on the level chosen

for factor B, there is interaction between A and B.



 When an interaction is large, the corresponding main effects have very little

practical meaning. For example, the main effect of A as

We conclude that there is no factor A effect.

However, when we examined the effects of A at

different levels of factor B, we saw that this was not

the case. The effect of factor A depends on the levels

of factor B. Thus, knowledge of the AB interaction

is more useful than knowledge of the main effect. A

significant interaction can mask the significance of

main effects.
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Three-dimensional surface plot

 The slope of the plane in the A and B directions is proportional to the main effects

of factors A and B, respectively

 The effect of interaction in these data is to “twist” the plane so that there is

curvature in the response function.

Factorial experiments are the only way to discover interactions between variables.





To optimize temperature, the engineer then fixes time at 1.7 hours (the apparent

optimum) and performs five runs at different temperatures, say, 140, 150, 160, 170,

and 180°F

Maximum yield occurs at about 155°F. Therefore, we would conclude that running the

process at 155°F and 1.7 hours is the best set of operating conditions, resulting in

yields of around 75%.



The one-factor-at-a-time approach has failed here because it cannot detect the interaction between

temperature and time. Factorial experiments are the only way to detect interactions. Furthermore,

the one-factor-at-a-time method is inefficient. It requires more experimentation than a factorial,

and as we have just seen, there is no assurance that it will produce the correct results.

FIGURE 14-9 Optimization 

experiment using the one-

factor-at-a-time method.

The failure to discover the importance of the

shorter reaction times is particularly

important because this could have significant

impact on production volume or capacity,

production planning, manufacturing cost, and

total productivity.



Two-Factor Factorial Experiments



Two-Factor Factorial Experiments

 There are a levels of factor A and b levels of factor B.

 The experiment has n replicates, and each replicate contains all ab treatment 

combinations.

 The observation in the ijth cell for the kth replicate is denoted by yijk. 



Statistical analysis of the fixed-effects model











It is usually best to conduct the test for interaction first and then to evaluate the main

effects. If interaction is not significant, interpretation of the tests on the main effects

is straightforward. However, when interaction is significant, the main effects of the

factors involved in the interaction may not have much practical interpretative value.

Knowledge of the interaction is usually more important than knowledge about the

main effects.







Aircraft Primer Paint Aircraft primer paints are applied to aluminum surfaces by two

methods: dipping and spraying. The purpose of using the primer is to improve paint

adhesion, and some parts can be primed using either application method. The process

engineering group responsible for this operation is interested in learning whether three

different primers differ in their adhesion properties. A factorial experiment was performed

to investigate the effect of paint primer type and application method on paint adhesion





Factor Information

Factor Type Levels Values

Method Fixed 2 1, 2

Primer type Fixed 3 1, 2, 3

Analysis of Variance for Force

Source DF SS MS F P

Method 1 4.9089 4.90889 59.70 0.000

Primer type 2 4.5811 2.29056 27.86 0.000

Method*Primer  2 0.2411 0.12056 1.47 0.269

Error 12 0.9867 0.08222

Total 17 10.7178





Example: An engineer suspects that the surface finish of metal parts is influenced by the type

of paint used and the drying time. He selected three drying times: 20, 25, and 30 minutes and

used two types of paint. Three parts are tested with each combination of paint type and drying

time. The data are as follow

(a) State the hypotheses of interest in this experiment. 

(b) Test the hypotheses in part (a) and draw conclusions using 

the analysis of variance with α = 0.05. 

(c) Analyze the residuals from this experiment



Model Adequacy





Example: the effects of cyclic loading frequency and environment conditions on fatigue

crack growth at a constant 22 MPa stress for a particular material. The data follow. The

response variable is fatigue crack growth rate.

(a) Is there indication that either factor affects crack

growth rate? Is there any indication of interaction?

Use α = 0.05.

(b) Analyze the residuals from this experiment.

(c) Repeat the analysis in part (a) using ln(y) as the

response. Analyze the residuals from this new

response variable and comment on the results.



General Factorial Experiments









Example: The quality control department of a fabric finishing plant is studying the effects of

several factors on dyeing for a blended cotton/synthetic cloth used to manufacture shirts.

Three operators, three cycle times, and two temperatures were selected, and three small

specimens of cloth were dyed under each set of conditions. The finished cloth was compared

to a standard, and a numerical score was assigned. The results are shown in the following

table.

(a) State and test the appropriate hypotheses using the analysis of variance with α = 0.05.

(b) Graphically analyze the residuals from this experiment.





2k Factorial Designs

Factorial designs are frequently used in experiments involving several factors where

it is necessary to study the joint effect of the factors on a response.

22 DESIGN

treatment combination a indicates

that factor A is at the high level

and factor B is at the low level.

The treatment combination with

both factors at the low level is

represented by (1).



Contrast A

Contrast B

Contrast AB





Example: A basic processing step in this industry is to grow an epitaxial layer on polished silicon

wafers. The wafers are mounted on a susceptor and positioned inside a bell jar. Chemical vapors are

introduced through nozzles near the top of the jar. The susceptor is rotated, and heat is applied. These

conditions are maintained until the epitaxial layer is thick enough.

A = deposition time and B = arsenic flow rate. The two levels of deposition time are − = short and + = long, and the 

two levels of arsenic flow rate are − = 55% and + = 59%









2k DESIGN FOR k ≥ 3 FACTORS





















Single Replicate of the 2k Design

 As the number of factors in a factorial experiment increases, the number of effects

that can be estimated also increases.

• For example, a 24 experiment has 4 main effects, 6 two-factor interactions, 4

three-factor interactions, and 1 four-factor interaction, and a 26 experiment

has 6 main effects, 15 two-factor interactions, 20 three-factor interactions, 15

four-factor interactions, 6 five-factor interactions, and 1 six-factor interaction.

 In most situations, the sparsity of effects principle applies; that is, the system is

usually dominated by the main effects and low-order interactions. The three-factor

and higher order interactions are usually negligible. Therefore, when the number of

factors is moderately large, say, k ≥ 4 or 5, a common practice is to run only a single

replicate of the 2k design and then pool or combine the higher order interactions as an

estimate of error. Sometimes a single replicate of a 2k design is called an

unreplicated 2k factorial design



















Addition of Center Points to a 2k Design





Addition of Center Points to a 2k Design







Blocking and Confounding in the 2k Design

 Ideal: Run all experiments in a 2k factorial design under homogenous conditions.

 The “ideal” often is not possible. Experiment will often be “blocked” according to some 

extraneous factor:

o Multiple equipment setups

o Different personnel

o Different raw materials

o Temporal conditions change

 Block size may be smaller than the number of runs in a complete replicate

 In analyzing the results, the block effect will be confounded with certain factor effects.



Example: You are agricultural scientist investigating productivity of wheat.

A: Watering (low/high)

B: Sunlight (low/high)

Response: Wheat produced /day

Watering (A)

Sunlight (B) Low watering

Low sunlight

(1) = 50 kg/day

High watering

Low sunlight

(a) = 150kg/day

Low watering

High sunlight

(b) = 90 kg/day

High watering

High sunlight

(ab) =170 kg/day



What if there are two different combines that harvest the 

wheat?





δ increase productivity between old and new combine









Example: Researchers reported on an experiment to minimize variation in blood

glucose levels. The factors were volume of juice intake before exercise (4-8 g),

amount of exercise on a Nordic Track cross-country skier (10-20 min), and delay

between time of juice intake (0-20 min) and the beginning of the exercise period.

If you wish to block for time of day (am vs. pm), how should we choose with

experiments to conduct in the am vs. pm?
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